cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076432 Perfect powers for which the three closest perfect powers are smaller.

Original entry on oeis.org

36, 144, 2209, 6436369, 312079766881, 328081510656, 11305787558464, 62854912315881, 79723540870416, 4550858480922601, 11435943732416784, 3109406220195722500, 6258210474706101136, 7596357574791306304, 21016258678615763761, 32645304184825666489
Offset: 1

Views

Author

Neil Fernandez, Oct 10 2002

Keywords

Examples

			The three closest perfect powers to 36 are 32 (difference = 4), 27 (difference = 9) and 25 (difference = 11). The fourth closest is 49 (difference = 13). 32, 27 and 25 are smaller than 36, so 36 is in the sequence.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import mobius, integer_nthroot
    def A076432_gen(): # generator of terms
        def f(x): return int(x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        a = bisection(f)
        b = bisection(lambda x:f(x)+1,a,a)
        c = bisection(lambda x:f(x)+2,b,b)
        d = bisection(lambda x:f(x)+3,c,c)
        for i in count(4):
            e = bisection(lambda x:f(x)+i,d,d)
            if d-a < e-d:
                yield d
            a,b,c,d=b,c,d,e
    A076432_list = list(islice(A076432_gen(),5)) # Chai Wah Wu, Sep 09 2024

Extensions

More terms from Jud McCranie and Robert G. Wilson v, Oct 11 2002
a(5)-a(10) from Donovan Johnson, Sep 03 2008
a(11)-a(16) from Donovan Johnson, Aug 01 2013