A076432 Perfect powers for which the three closest perfect powers are smaller.
36, 144, 2209, 6436369, 312079766881, 328081510656, 11305787558464, 62854912315881, 79723540870416, 4550858480922601, 11435943732416784, 3109406220195722500, 6258210474706101136, 7596357574791306304, 21016258678615763761, 32645304184825666489
Offset: 1
Keywords
Examples
The three closest perfect powers to 36 are 32 (difference = 4), 27 (difference = 9) and 25 (difference = 11). The fourth closest is 49 (difference = 13). 32, 27 and 25 are smaller than 36, so 36 is in the sequence.
Programs
-
Python
from itertools import count, islice from sympy import mobius, integer_nthroot def A076432_gen(): # generator of terms def f(x): return int(x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax a = bisection(f) b = bisection(lambda x:f(x)+1,a,a) c = bisection(lambda x:f(x)+2,b,b) d = bisection(lambda x:f(x)+3,c,c) for i in count(4): e = bisection(lambda x:f(x)+i,d,d) if d-a < e-d: yield d a,b,c,d=b,c,d,e A076432_list = list(islice(A076432_gen(),5)) # Chai Wah Wu, Sep 09 2024
Extensions
More terms from Jud McCranie and Robert G. Wilson v, Oct 11 2002
a(5)-a(10) from Donovan Johnson, Sep 03 2008
a(11)-a(16) from Donovan Johnson, Aug 01 2013