cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076438 Numbers k which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = k, with a > 0, b > 0, x > 1, y > 1.

Original entry on oeis.org

1, 2, 10, 29, 30, 38, 43, 46, 52, 59, 122, 126, 138, 142, 146, 150, 154, 166, 170, 173, 181, 190, 194, 214, 222, 234, 263, 270, 282, 283, 298, 317, 318, 332, 338, 342, 347, 349, 354, 361, 370, 379, 382, 383, 386, 406, 419, 428, 436, 461, 467, 479, 484, 486
Offset: 1

Views

Author

T. D. Noe, Oct 12 2002

Keywords

Comments

This is the classic Diophantine equation of S. S. Pillai, who conjectured that there are only a finite number of solutions for each k. A generalization of Catalan's conjecture that a^x - b^y = 1 has only one solution. See A076427 for the number of solutions for each k. Interestingly, the unique solutions (k,a,x,b,y) fall into two groups: (A076439) those in which x and y are even numbers, so that k is the difference of squares, and (A076440) those requiring an odd power. This sequence was found by examining all perfect powers (A001597) less than 2^63-1. By examining a larger set of perfect powers, we may discover that some of these numbers do not have a unique representation.

References

  • R. K. Guy, Unsolved Problems in Number Theory, D9.
  • T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.

Crossrefs