A076438 Numbers k which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = k, with a > 0, b > 0, x > 1, y > 1.
1, 2, 10, 29, 30, 38, 43, 46, 52, 59, 122, 126, 138, 142, 146, 150, 154, 166, 170, 173, 181, 190, 194, 214, 222, 234, 263, 270, 282, 283, 298, 317, 318, 332, 338, 342, 347, 349, 354, 361, 370, 379, 382, 383, 386, 406, 419, 428, 436, 461, 467, 479, 484, 486
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, D9.
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
Links
- M. E. Bennett, On Some Exponential Equations Of S. S. Pillai, Canad. J. Math. 53 (2001), 897-922.
- T. D. Noe, Unique solutions to Pillai's Equation for n <= 1000.
- Eric Weisstein's World of Mathematics, Pillai's Conjecture.
Comments