A076449 Least number whose digits can be used to form exactly n different primes (not necessarily using all digits).
1, 2, 25, 13, 37, 107, 127, 113, 167, 1027, 179, 137, 1036, 1127, 1013, 1137, 1235, 1136, 1123, 1037, 1139, 1079, 10124, 10126, 1349, 1279, 1237, 3479, 10699, 1367, 10179, 1379, 10127, 10079, 10138, 10123, 10234, 10235, 10247, 10339, 10267
Offset: 0
Examples
a(10) = 179 because 179 is the least number harboring ten primes (namely 7, 17, 19, 71, 79, 97, 179, 197, 719, 971).
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..2702 (terms 1..457 from Robert G. Wilson v)
- Michael S. Branicky, Python program for A076449, A072857, A076730, A134596
- C. K. Caldwell, The Prime Glossary, Primeval Number
- J. P. Delahaye, Primes Hunters, 1379 is very primeval (in French)
- Mike Keith, Integers containing many embedded primes
- W. Schneider, Primeval Numbers
- G. Villemin's Almanach of Numbers, Nombre Primeval de Mike Keith
Programs
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Length[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[ IntegerDigits[ n]], 1], PrimeQ[ # ] &]]; t = Table[0, {50}]; Do[ a = f[n]; If[a < 50 && t[[a + 1]] == 0, t[[a + 1]] = n], {n, 12500}]; t (* Robert G. Wilson v, Feb 12 2005 *)
-
PARI
A076449(n)=for(m=1,oo,A039993(m)==n&&return(m)) \\ Not very efficient. - M. F. Hasler, Mar 08 2014
-
Python
# see linked program
Formula
Extensions
Edited by Robert G. Wilson v, Nov 24 2002
Keith link repaired by Charles R Greathouse IV, Aug 13 2009
Definition reworded by M. F. Hasler, Mar 08 2014
a(26) corrected by Robert G. Wilson v, Mar 12 2014
Comments