A072857 Primeval numbers: numbers that set a record for the number of distinct primes that can be obtained by permuting some subset of their digits.
1, 2, 13, 37, 107, 113, 137, 1013, 1037, 1079, 1237, 1367, 1379, 10079, 10123, 10136, 10139, 10237, 10279, 10367, 10379, 12379, 13679, 100279, 100379, 101237, 102347, 102379, 103679, 123479, 1001237, 1002347, 1002379, 1003679, 1012349, 1012379, 1023457, 1023467, 1023479, 1234579, 1234679, 10012349
Offset: 1
Examples
1379 is in the sequence because it is the smallest number whose digital permutations form a total of 31 primes, viz. 3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173, 9371.
References
- J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), "1379's quite primeval, is it not?", pp. 318-321, Pour la Science, Paris 2000.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..100
- C. K. Caldwell, The Prime Glossary, primeval number
- J. P. Delahaye, Primes Hunters, 1379 is very primeval (in French)
- M. Keith, Integers containing many embedded primes
- W. Schneider, Primeval Numbers
- N. J. A. Sloane, Transforms
- G. Villemin's Almanach of Numbers, Nombre Primeval de Mike Keith
- Wikipedia, Primeval number
Crossrefs
Programs
-
Mathematica
(*first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Length[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[ IntegerDigits[ n]], 1], PrimeQ[ # ] &]]; d = -1; Do[ b = f[n]; If[b > d, Print[n]; d = b], {n, 2^20}] (* Robert G. Wilson v, Feb 12 2005 *) Join[{1},DeleteDuplicates[Table[{n,Count[Union[FromDigits/@Flatten[Permutations[#]&/@Subsets[IntegerDigits[n]],1]],?PrimeQ]},{n,2,125000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]]] (* The program generates the first 30 terms of the sequence. *) (* _Harvey P. Dale, Nov 16 2024 *)
-
PARI
A072857_upto(num_digits,s=1,m=-1,L=List())={for(n=s,num_digits, my(u=10^(n-1)); forvec(v=vector(n-(n>2),i,[0,if(n>6,9*(i+1)\n,n>3,10-(n-i)\.6,7)]), m<A039993(u+fromdigits(v)) && m=A039993(listput(L,u+fromdigits(v))),1)); Vec(L)} \\ Optional 2nd and 3rd arg allow to extend a previous computation. - M. F. Hasler, Oct 15 2019
-
Python
# see linked program in A076449
Extensions
Edited, corrected and extended by Robert G. Wilson v, Nov 12 2002
Comment corrected by N. J. A. Sloane, Jan 25 2008
Comments