A134597 a(n) gives the maximal value of A075053(m) for any n-digit number m.
1, 4, 11, 31, 106, 402, 1953
Offset: 1
Examples
From _M. F. Hasler_, Oct 14 2019: (Start) a(2) = 4 = A075053(37), because from 37 one can obtain the primes {3, 7, 37, 73}, and there is obviously no 2-digit number which could give more primes. a(3) = 11 = A075053(137), because from 137 one can obtain the primes {3, 7, 13, 17, 31, 37, 71, 73, 137, 173, 317}, and no 3-digit number yields more. a(4) = 31 = A075053(1379), because from 1379 one can obtain the 31 primes {3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173, 9371}, and no 4-digit number yields more. a(5) = 106 = A075053(13679). a(6) = 402 = A075053(123479). a(7) = 1953 = A075053(1234679). (End)
Links
- M. Keith, Integers containing many embedded primes
Crossrefs
Programs
-
PARI
A134597(n)={my(m=0);forvec(D=vector(n,i,[0,9]), vecsum(D)%3||next;m=max(A075053(fromdigits(D),D),m),1);m} \\ M. F. Hasler, Oct 14 2019
Formula
a(n) <= A007526(n), with equality iff n <= 2. [Keith]
a(n) = max { A075053(m); 10^(n-1) <= m < 10^n } >= A076730(n) = max { A039993(m); 10^(n-1) <= m < 10^n }. - M. F. Hasler, Mar 11 2014
Extensions
Link fixed by Charles R Greathouse IV, Aug 13 2009
Definition corrected by M. F. Hasler, Mar 11 2014
Data corrected and extended by M. F. Hasler, Oct 14 2019
Comments