cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A076389 Sum of squares of numbers that cannot be written as t*n + u*(n+1) for nonnegative integers t,u.

Original entry on oeis.org

0, 1, 30, 220, 950, 3045, 8036, 18480, 38340, 73425, 131890, 224796, 366730, 576485, 877800, 1300160, 1879656, 2659905, 3693030, 5040700, 6775230, 8980741, 11754380, 15207600, 19467500, 24678225, 31002426, 38622780, 47743570
Offset: 1

Views

Author

Floor van Lamoen, Oct 09 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Maple
    seq(n^2*(n^2-1)*(n^2-n-1)/12,n=1..40);

Formula

n^2*(n^2-1)*(n^2-n-1)/12.
G.f.:(1+23*x+31*x^2+5*x^3)*x^2/(1-x)^7

A076460 Sum of squares of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.

Original entry on oeis.org

1, 103, 1130, 6070, 22355, 64981, 160468, 351660, 703365, 1308835, 2297086, 3841058, 6166615, 9562385, 14390440, 21097816, 30228873, 42438495, 58506130, 79350670, 106046171, 139838413, 182162300, 234660100, 299200525, 377898651, 473136678, 587585530, 724227295
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(7*n^4+2*n^3-6*n^2-n+1)/6: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/6*n*(n+1)*(7*n^4+2*n^3-6*n^2-n+1),n=1..30);
  • Mathematica
    CoefficientList[Series[(1 + 96 x + 430 x^2 + 288 x^3 + 25 x^4)/(1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,103,1130,6070,22355,64981,160468},30] (* Harvey P. Dale, Jul 04 2025 *)

Formula

a(n) = n*(n+1)*(7*n^4+2*n^3-6*n^2-n+1)/6.
G.f.: x*(1+96*x+430*x^2+288*x^3+25*x^4)/(1-x)^7.

Extensions

More terms from Vincenzo Librandi, Dec 30 2013

A076461 Sum of squares of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly two ways.

Original entry on oeis.org

13, 571, 5306, 26470, 93455, 264313, 640276, 1383276, 2736465, 5047735, 8796238, 14621906, 23357971, 36066485, 54076840, 79027288, 112909461, 158115891, 217490530, 294382270, 392701463, 516979441, 672431036, 865020100, 1101528025, 1389625263, 1737945846, 2156164906
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(25*n^4+26*n^3-6*n^2-7*n+1)/6: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/6*n*(n+1)*(25*n^4+26*n^3-6*n^2-7*n+1),n=1..30);
  • Mathematica
    CoefficientList[Series[(13 + 480 x + 1582 x^2 + 864 x^3 + 61 x^4)/(1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

Formula

a(n) = n*(n+1)*(25*n^4+26*n^3-6*n^2-7*n+1)/6.
G.f.: x*(13+480*x+1582*x^2+864*x^3+61*x^4)/(1-x)^7.

Extensions

More terms from Vincenzo Librandi, Dec 30 2013

A076464 Sum of squares of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly five ways.

Original entry on oeis.org

145, 4567, 38570, 183670, 630755, 1751365, 4187092, 8957100, 17583765, 32236435, 55893310, 92521442, 147274855, 226710785, 339024040, 494299480, 704782617, 985168335, 1352907730, 1828533070, 2436000875, 3203053117, 4161596540, 5348100100, 6804010525
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(151*n^4+242*n^3+66*n^2-25*n+1)/6: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/6*n*(n+1)*(151*n^4+242*n^3+66*n^2-25*n+1),n=1..30);
  • Mathematica
    CoefficientList[Series[(145 + 3552 x + 9646 x^2 + 4512 x^3 + 265 x^4)/(1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

Formula

a(n) = n*(n+1)*(151*n^4+242*n^3+66*n^2-25*n+1)/6.
G.f.: x*(145+3552*x+9646*x^2+4512*x^3+265*x^4)/(1-x)^7.

Extensions

More terms from Vincenzo Librandi, Dec 30 2013

A076462 Sum of squares of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly three ways.

Original entry on oeis.org

41, 1471, 12938, 62870, 218555, 611821, 1471316, 3161388, 6227565, 11448635, 19895326, 32995586, 52606463, 81092585, 121411240, 177204056, 252895281, 353796663, 486218930, 657589870, 876579011, 1153228901, 1499092988, 1927380100, 2453105525, 3093248691
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(55*n^4+74*n^3+6*n^2-13*n+1)/6: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/6*n*(n+1)*(55*n^4+74*n^3+6*n^2-13*n+1),n=1..30);
  • Mathematica
    CoefficientList[Series[(41 + 1184 x + 3502 x^2 + 1760 x^3 + 113 x^4)/(1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

Formula

a(n) = n*(n+1)*(55*n^4+74*n^3+6*n^2-13*n+1)/6.
G.f.: x*(41+1184*x+3502*x^2+1760*x^3+113*x^4)/(1-x)^7.

A076463 Sum of squares of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly four ways.

Original entry on oeis.org

85, 2803, 24026, 115270, 397655, 1107505, 2653588, 5685996, 11176665, 20511535, 35594350, 58962098, 93912091, 144640685, 216393640, 315628120, 450186333, 629480811, 864691330, 1168973470, 1557678815, 2048586793, 2662148156, 3421740100, 4353933025
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(97*n^4+146*n^3+30*n^2-19*n+1)/6: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/6*n*(n+1)*(97*n^4+146*n^3+30*n^2-19*n+1),n=1..30);
  • Mathematica
    CoefficientList[Series[(85 + 2208 x + 6190 x^2 + 2976 x^3 + 181 x^4)/(1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

Formula

a(n) = n*(n+1)*(97*n^4+146*n^3+30*n^2-19*n+1)/6.
G.f.: x*(85+2208*x+6190*x^2+2976*x^3+181*x^4)/(1-x)^7.
Showing 1-6 of 6 results.