cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076536 Image of n at the third step in the 3x+1 Problem: syr(3,n).

Original entry on oeis.org

1, 2, 16, 4, 4, 5, 34, 1, 7, 8, 52, 10, 10, 11, 70, 2, 13, 14, 88, 16, 16, 17, 106, 3, 19, 20, 124, 22, 22, 23, 142, 4, 25, 26, 160, 28, 28, 29, 178, 5, 31, 32, 196, 34, 34, 35, 214, 6, 37, 38, 232, 40, 40, 41, 250, 7, 43, 44, 268, 46, 46, 47, 286, 8, 49, 50, 304, 52, 52, 53
Offset: 1

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 18 2002

Keywords

Comments

Also known as the Collatz Problem, Syracuse Algorithm or Hailstone Problem. Let syr(m,n) be the image of n at the m-th step. for m=3, k>=0 we get: syr(3,8k)=k, syr(3,8k+1)=6k+1, syr(3,8k+2)=6k+2, syr(3,8k+3)=36k+16, syr(3,8k+4)=6k+4, syr(3,8k+5)=6k+4, syr(3,8k+6)=6k+5, syr(3,8k+7)=36k+34.

Examples

			1->4->2->1; 2->1->4->2; 3->10->5->16; ...
		

References

  • David Wells, Penguin Dictionary of Curious and Interesting Numbers.

Crossrefs

Cf. A006370 (n at step 1), A075884 (n at step 2).
Column k=3 of A347270.

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +2*x +16*x^2 +4*x^3 +4*x^4 +5*x^5 +34*x^6 +x^7 +5*x^8 +4*x^9 +20*x^10 +2*x^11 +2*x^12 +x^13 +2*x^14)/(1-x^8)^2)); // G. C. Greubel, Oct 16 2018
  • Mathematica
    Rest[CoefficientList[Series[(x +2x^2 +16x^3 +4x^4 +4x^5 +5x^6 +34x^7 + x^8 +5x^9 +4x^10 +20x^11 +2x^12 +2x^13 +x^14 +2x^15)/(1-x^8)^2, {x, 0, 80}], x]] (* G. C. Greubel, Oct 16 2018 *)
  • PARI
    x='x+O('x^80); Vec(x*(1 +2*x +16*x^2 +4*x^3 +4*x^4 +5*x^5 +34*x^6 +x^7 +5*x^8 +4*x^9 +20*x^10 +2*x^11 +2*x^12 +x^13 +2*x^14)/(1-x^8)^2) \\ G. C. Greubel, Oct 16 2018
    

Formula

G.f.: x*(1 + 2*x + 16*x^2 + 4*x^3 + 4*x^4 + 5*x^5 + 34*x^6 + x^7 + 5*x^8 + 4*x^9 + 20*x^10 + 2*x^11 + 2*x^12 + x^13 + 2*x^14)/(1 - x^8)^2.
a(n) = (1/64)*(103*n + 60 + i^n*(36*i - n*(5-60*i)) - i^(2n)*(65*n+28) - i^(3n)(36*i+n*(5+60*i)) - i^(n/2)*(8+5n)*(1 + i^n + i^(2n) + i^(3n))). - Federico Provvedi, Nov 23 2021