cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386660 a(n) = Sum_{k=1..n} binomial(n, k) (mod 2^k).

Original entry on oeis.org

1, 1, 5, 7, 11, 29, 37, 67, 115, 225, 353, 635, 719, 2321, 3417, 3959, 7071, 9301, 22973, 35231, 62315, 71029, 246613, 338987, 544675, 855673, 1775777, 2960467, 3427695, 7422841, 16357769, 21442879, 27029999, 64048845, 75934141, 235944023, 323818203, 611090685, 512203269, 1789628291
Offset: 1

Views

Author

Paul D. Hanna, Jul 27 2025

Keywords

Comments

What is the limit of a(n)^(1/n)? For example: a(40000)^(1/40000) = 1.70864832516... and a(50000)^(1/50000) = 1.7086590658...

Examples

			The sum a(n) = Sum_{k=1..n} binomial(n, k) (mod 2^k) is illustrated below.
a(1) = 1 = 1;
a(2) = 0 + 1 = 1;
a(3) = 1 + 3 + 1 = 5;
a(4) = 0 + 2 + 4 + 1 = 7;
a(5) = 1 + 2 + 2 + 5 + 1 = 11;
a(6) = 0 + 3 + 4 + 15 + 6 + 1 = 29;
a(7) = 1 + 1 + 3 + 3 + 21 + 7 + 1 = 37;
a(8) = 0 + 0 + 0 + 6 + 24 + 28 + 8 + 1 = 67;
a(9) = 1 + 0 + 4 + 14 + 30 + 20 + 36 + 9 + 1 = 115;
a(10) = 0 + 1 + 0 + 2 + 28 + 18 + 120 + 45 + 10 + 1 = 225;
a(11) = 1 + 3 + 5 + 10 + 14 + 14 + 74 + 165 + 55 + 11 + 1 = 353;
a(12) = 0 + 2 + 4 + 15 + 24 + 28 + 24 + 239 + 220 + 66 + 12 + 1 = 635;
a(13) = 1 + 2 + 6 + 11 + 7 + 52 + 52 + 7 + 203 + 286 + 78 + 13 + 1 = 719;
a(14) = 0 + 3 + 4 + 9 + 18 + 59 + 104 + 187 + 466 + 1001 + 364 + 91 + 14 + 1 = 2321;
...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=1,n,binomial(n, k) % 2^k)}
    for(n=1,40,print1(a(n),", "))

A280559 Numbers m that divide Sum_{k=1..m} binomial(m,k) mod k.

Original entry on oeis.org

1, 14, 233, 244, 331, 889, 2725, 5219, 6746, 61452, 101712
Offset: 1

Views

Author

Paolo P. Lava, Jan 31 2017

Keywords

Comments

Ratios are 0, 2, 44, 47, 58, 162, 529, 1004, 1318.

Examples

			C(14,1) mod 1 + C(14,2) mod 2 + ... + C(14,13) mod 13 + C(14,14) mod 14 = 0 + 1 + 1 + 1 + 2 + 3 + 2 + 3 + 4 + 1 + 1 + 7 + 1 + 1 = 28 and 28/14 = 2 so 14 is a term.
		

Crossrefs

Cf. A076541.

Programs

  • Maple
    P:=proc(q) local k,n; for n from 1 to q do
    if type(add(binomial(n,k) mod k,k=1..n)/n,integer) then print(n); fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^3], Divisible[Sum[Mod[Binomial[#, k], k], {k, #}], #] &] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    isok(n) = (sum(k=1, n, binomial(n,k) % k) % n) == 0; \\ Michel Marcus, Jul 16 2017

Extensions

a(10)-a(11) from Chai Wah Wu, Jul 22 2025

A281908 a(n) = (Sum_{k=1..n} C(n,k) mod k) mod n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 2, 3, 6, 3, 3, 2, 1, 0, 2, 14, 13, 13, 12, 8, 18, 16, 14, 20, 2, 23, 24, 21, 19, 22, 19, 15, 21, 2, 25, 6, 1, 26, 25, 38, 33, 4, 42, 19, 34, 19, 14, 38, 31, 18, 22, 20, 14, 42, 29, 13, 9, 44, 38, 39, 31, 9, 4, 9, 25, 7, 63, 22, 2, 17, 7, 38, 27, 44, 25
Offset: 1

Views

Author

Michel Marcus, Feb 01 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n, k) % k) % n;

Formula

a(n) = A076541(n) mod n.
Showing 1-3 of 3 results.