cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076598 Sum of squares of divisors d of n such that d or n/d is odd.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 65, 91, 130, 122, 170, 170, 250, 260, 257, 290, 455, 362, 442, 500, 610, 530, 650, 651, 850, 820, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1547, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2366, 2650, 2210, 2570, 2451, 3255
Offset: 1

Views

Author

Vladeta Jovovic, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 4^e+1 ; f[p_, e_] := (p^(2*e+2)-1)/(p^2-1) ; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Aug 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d % 2) || (n/d % 2), d^2)); \\ Michel Marcus, Oct 30 2022

Formula

Multiplicative with a(2^e) = 4^e+1, a(p^e) = (p^(2*e+2)-1)/(p^2-1) for an odd prime p.
G.f.: Sum_{m>0} m^2*x^m*(1+2*x^m+3*x^(2*m))/(1+x^(2*m))/(1+x^m).
More generally, if b(n, k) is sum of k-th powers of divisors d of n such that d or n/d is odd then b(n, k) = sigma_k(n)-2^k*sigma_k(n/4) if n mod 4=0, otherwise b(n, k) = sigma_k(n).
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1+x^m+x^(2*m)-(2^k-1)*x^(3*m))/(1-x^(4*m)). b(n, k) is multiplicative and b(2^e, k) = 2^(k*e)+1, b(p^e, k) = (p^(k*e+k)-1)/(p^k-1) for an odd prime p.
a(n) = sigma_2(n)-4*sigma_2(n/4) if n mod 4=0, otherwise a(n) = sigma_2(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 5*zeta(3)/16 = 0.375642... . - Amiram Eldar, Oct 30 2022