cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A076612 Palindromic numbers with nonprime middle digit.

Original entry on oeis.org

1, 4, 6, 8, 9, 101, 111, 141, 161, 181, 191, 202, 212, 242, 262, 282, 292, 303, 313, 343, 363, 383, 393, 404, 414, 444, 464, 484, 494, 505, 515, 545, 565, 585, 595, 606, 616, 646, 666, 686, 696, 707, 717, 747, 767, 787, 797, 808, 818, 848, 868, 888, 898, 909
Offset: 1

Views

Author

Jani Melik, Oct 21 2002

Keywords

Comments

By definition, all terms have an odd number of digits. It is not surprising that the sequence of middle digits is 1, 4, 6, 8, 9, 0. - Harvey P. Dale, Jun 15 2024

Crossrefs

Programs

  • Maple
    ts_num_midpal := proc(n) local ad,adr,midigit; ad := convert(n,base,10): adr := ListTools[Reverse](ad): if nops(ad) mod 2 = 0 then return 1; fi; midigit := op( (nops(ad)+1)/2,ad ): if (isprime( midigit )='false' and adr=ad) then return 0; else return 1; fi end: ts_n_pal := proc(n) if ts_num_midpal(n) = 0 then return (i) fi end: anpal := [seq(ts_n_pal(i), i=1..50000)]: anpal;
  • Mathematica
    Select[Range[1000],PalindromeQ[#]&&OddQ[IntegerLength[#]]&&!PrimeQ[IntegerDigits[#][[(IntegerLength[#]+1)/2]]]&] (* Harvey P. Dale, Jun 15 2024 *)
  • Python
    from itertools import chain, count, islice
    def A076612_gen(): # generator of terms
        return chain((1,4,6,8,9),chain.from_iterable((int((s:=str(d))+e+s[::-1]) for d in range(10**l,10**(l+1)) for e in '014689') for l in count(0)))
    A076612_list = list(islice(A076612_gen(),20)) # Chai Wah Wu, Jun 23 2022
Showing 1-1 of 1 results.