cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076644 a(1)=1; for n>1, a(n) = a(n-floor(sqrt(n))) + n.

Original entry on oeis.org

1, 3, 6, 7, 11, 13, 18, 21, 22, 28, 32, 34, 41, 46, 49, 50, 58, 64, 68, 70, 79, 86, 91, 94, 95, 105, 113, 119, 123, 125, 136, 145, 152, 157, 160, 161, 173, 183, 191, 197, 201, 203, 216, 227, 236, 243, 248, 251, 252, 266, 278, 288, 296, 302, 306, 308, 323, 336
Offset: 1

Views

Author

Benoit Cloitre, Oct 23 2002

Keywords

Comments

a(n) = floor(2/3*n*(sqrt(n)+1)) for n in A076660.
The sign of a(n) - floor(2/3*n*(sqrt(n)+1)) changes often.
Cumulative sums of A122196. - Franklin T. Adams-Watters, Aug 25 2006

Crossrefs

Programs

  • Haskell
    a076644 n = a076644_list !! (n-1)
    a076644_list = scanl1 (+) a122196_list
  • Mathematica
    a[n_] := Module[{r, s}, r=Floor[1/2+Sqrt[n]]; s=n-r^2; (r(r+1)(4r-1))/6+If[s<=0, -s^2, s(2r+1-s)]]
  • PARI
    a(n)=if(n<2,n>0,n+a(n-sqrtint(n)))
    

Formula

Write n=r^2+s with -r < s <= r; then a(n) = r*(r+1)*(4r-1)/6 + x, where x = -s^2 if s <= 0, x = s*(2r+1-s) if s >= 0. - Dean Hickerson, Nov 11 2002
a(n) is asymptotic to 2/3*n^(3/2).
a(n) = n*(2*x^2+2*x+1-n) - 1/6*x*(x+1)*(6*x^2+2*x+1) + floor((n-x^2)/(x+1))*(2*x+1)*(n-x-x^2) where x = floor(sqrt(n)). - Hoang Xuan Thanh, May 17 2025