cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227071 Let s(m) = the set of k > 0 such that k^m ends with k. Then a(n) = least m such that s(m) = s(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 3, 2, 9, 2, 11, 2, 5, 2, 3, 6, 17, 2, 3, 2, 21, 2, 3, 2, 9, 26, 3, 2, 5, 2, 11, 2, 33, 2, 3, 6, 5, 2, 3, 2, 41, 2, 3, 2, 5, 6, 3, 2, 17, 2, 51, 2, 5, 2, 3, 6, 9, 2, 3, 2, 21, 2, 3, 2, 65, 6, 3, 2, 5, 2, 11, 2, 9, 2, 3, 26, 5, 2, 3, 2, 81, 2
Offset: 1

Views

Author

T. D. Noe, Jul 29 2013

Keywords

Comments

See A227070 for more details and for the numbers n such that n = a(n).
The entries in the b-file have been tentatively obtained by comparing the terms < 10^30 in the sets s(n). - Giovanni Resta, Jul 30 2013

Crossrefs

Cf. A003226 (n=2), A033819 (n=3), A068407 (n=5), A068408 (n=6).
Cf. A072496 (n=11), A072495 (n=21), A076650 (n=26).
Cf. A227070 (n such that n = a(n)).

Programs

  • Mathematica
    ts = {{}}; t2 = {1}; te = {1}; Do[s = Select[Range[0, 10^7], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[MemberQ[ts, s], AppendTo[t2, te[[Position[ts, s, 1, 1][[1, 1]]]]], AppendTo[ts, s]; AppendTo[te, n]; AppendTo[t2, n]], {n, 2, 82}]; t2

Formula

Conjecture: a(n+1) = A132741(n) + 1. - Eric M. Schmidt, Jul 30 2013

Extensions

Mathematica program and some entries corrected by Giovanni Resta, Jul 30 2013

A227070 Powers n such that the set s(n) = {k > 0 such that k^n ends with k} does not occur for smaller n.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 11, 17, 21, 26, 33, 41, 51, 65, 81, 101, 126, 129, 161, 201, 251, 257, 321, 401, 501, 513, 626, 641, 801, 1001, 1025, 1251, 1281, 1601, 2001, 2049, 2501, 2561, 3126, 3201, 4001, 4097, 5001, 5121, 6251, 6401, 8001, 8193, 10001
Offset: 1

Views

Author

T. D. Noe, Jul 29 2013

Keywords

Comments

These numbers might be called automorphic powers because the sets s(n) are called automorphic numbers. It appears that all numbers of the form 1 + 5^i are here. In fact, these appear to produce the only even numbers here. The set s(4) equals s(2). The set s(7) equals s(3). The set s(9) does not differ from s(5) until k = 10443. The set s(17) does not differ from s(9) until k = 108307. The sequence also has 126, 201, 251, 501, and 626, but there may be missing numbers.
Entries a(17)-a(49) have been tentatively obtained by comparing the terms < 10^30 in the sets s(n), for 2 <= n <= 10001. - Giovanni Resta, Jul 30 2013

Crossrefs

Cf. A003226 (n=2), A033819 (n=3), A068407 (n=5), A068408 (n=6).
Cf. A072496 (n=11), A072495 (n=21), A076650 (n=26).
Cf. A227071.

Programs

  • Mathematica
    ts = {}; t = {}; Do[s = Select[Range[11000000], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[! MemberQ[ts, s], Print[n]; AppendTo[ts, s]; AppendTo[t, n]], {n, 2, 101}]; t = Join[{1}, t]

Formula

Conjecture: a(n+1) = A003592(n) + 1. - Eric M. Schmidt, Jul 30 2013

Extensions

a(17)-a(49) from Giovanni Resta, Jul 30 2013
Showing 1-2 of 2 results.