A076670 Prime divisors of (10^9)^(10^9) + 1 = 10^9000000000 + 1.
39937, 64513, 921601, 1514497, 9188353, 11059201, 23500801, 25159681, 99328001, 288000001, 302078977, 593920001, 864000001, 14400000001, 16002416641, 27769098241, 35904000001, 61120000001, 61600000001, 90708480001, 164457013249
Offset: 1
Examples
a(1) = 39937 because 39937 is the smallest prime divisor of (10^9)^(10^9) + 1.
References
- NZ Science Monthly Bulletin Board, advert., 2000.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..31
- S. S. Wagstaff, The Cunningham Project.
Crossrefs
Cf. A055386 (least prime factor of (2n)^(2n) + 1 ).
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 2; Do[ While[ PowerMod[10, 9000000000, p] + 1 != p, p = NextPrim[p]]; Print[p]; p++, {n, 1, 19}]
-
PARI
forstep(p=1, 10^14, 1024, if(!ispseudoprime(p), next); if(Mod(10,p)^9000000000==-1, print(p)); )
Extensions
Thanks for help from Kurt Foster and Bob Backstrom (Australia) - Donald S. McDonald
Edited and extended by Robert G. Wilson v, Nov 13 2002
Definition corrected by Sean A. Irvine, Feb 16 2010
Definition corrected by Max Alekseyev, Apr 28 2010
a(20)-a(31) from Max Alekseyev, Apr 28 2013, Jul 02 2013, Sep 10 2023
Comments