cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076670 Prime divisors of (10^9)^(10^9) + 1 = 10^9000000000 + 1.

Original entry on oeis.org

39937, 64513, 921601, 1514497, 9188353, 11059201, 23500801, 25159681, 99328001, 288000001, 302078977, 593920001, 864000001, 14400000001, 16002416641, 27769098241, 35904000001, 61120000001, 61600000001, 90708480001, 164457013249
Offset: 1

Views

Author

Donald S. McDonald, Oct 25 2002

Keywords

Comments

Numbers of the form 10^{10h}+1 can be algebraically factored into (10^{2h}+1)*L*M, L=A-B, M=A+B, h=2k-1, A=10^{4h}+5.10^{3h}+7.10^{2h}+5.10^h+1, B=10^k(10^{3h}+2.10^{2h}+2.10^h+1).
Cyclotomic factorization: 10^(9*10^9) + 1 = Product_{d|9*5^9} Phi_{1024*d}(10).
Every term is congruent to 1, 2049, 3073, or 9217 modulo 10240. - Max Alekseyev, Aug 30 2023
a(32) > 10^16. - Max Alekseyev, Sep 10 2023
Contains 1137797098931682858642433, 3611707318387778163302401. - Max Alekseyev, Sep 10 2023

Examples

			a(1) = 39937 because 39937 is the smallest prime divisor of (10^9)^(10^9) + 1.
		

References

  • NZ Science Monthly Bulletin Board, advert., 2000.

Crossrefs

Cf. A055386 (least prime factor of (2n)^(2n) + 1 ).

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 2; Do[ While[ PowerMod[10, 9000000000, p] + 1 != p, p = NextPrim[p]]; Print[p]; p++, {n, 1, 19}]
  • PARI
    forstep(p=1, 10^14, 1024, if(!ispseudoprime(p), next); if(Mod(10,p)^9000000000==-1, print(p)); )

Extensions

Thanks for help from Kurt Foster and Bob Backstrom (Australia) - Donald S. McDonald
Edited and extended by Robert G. Wilson v, Nov 13 2002
Definition corrected by Sean A. Irvine, Feb 16 2010
Definition corrected by Max Alekseyev, Apr 28 2010
a(20)-a(31) from Max Alekseyev, Apr 28 2013, Jul 02 2013, Sep 10 2023