cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076704 Numbers k of the form p^q where both p and q are prime and all digits of k are odd.

Original entry on oeis.org

9, 1331, 357911, 5177717, 5735339, 9393931, 17171515157399, 335571975137771, 7979737131773191, 13337513771953951, 13137917533317175739371379, 33159599371999557199755557, 1593395573971551557179777111133, 131755773357537951113179771515713, 315113377779977515359339551539771
Offset: 1

Views

Author

Zak Seidov, Oct 26 2002

Keywords

Comments

Up to 10^17, there are only 10 odd-digit prime powers of prime numbers. a(1) = 3^2, a(2) = 11^3, a(3) = 71^3, a(4) = 173^3, a(5) = 179^3, a(6) = 211^3, a(7) = 25799^3, a(8) = 69491^3, a(9) = 199831^3, and a(10) = 237151^3.
The only candidates for even-digit prime powers of prime numbers are of the form 2^n, and below 2^10000 there are only 2, 4, 8, 64, and 2048, two of which are not raised to prime powers.
a(11) <= 13137917533317175739371379 and a(12) <= 33159599371999557199755557. - Jinyuan Wang, Mar 02 2020

Crossrefs

Programs

  • Mathematica
    pp = Sort[ Flatten[ Table[ Prime[n]^Prime[i], {n, 1, PrimePi[ Sqrt[10^17]]}, {i, 1, PrimePi[ Floor[ Log[ Prime[n], 10^17]]]}]]]; Do[ If[ Union[ OddQ[ IntegerDigits[ pp[[n]]]]] == {True}, Print[ pp[[n]]]], {n, 1, Length[pp]}]
  • PARI
    lista(nn) = {my(k, v=List([])); forprime(p=2, nn, forprime(q=2, logint(nn, p), if(Set(digits(k=p^q)%2)==[1], listput(v, k)))); Set(v); } \\ Jinyuan Wang, Mar 02 2020

Extensions

Edited and extended by Robert G. Wilson v, Oct 31 2002
Corrected and edited by Elliott Line, Jul 11 2013
Better definition from Jon E. Schoenfield, Nov 19 2018
Terms a(11) and beyond from Giovanni Resta, Mar 03 2020