A076725 a(n) = a(n-1)^2 + a(n-2)^4, a(0) = a(1) = 1.
1, 1, 2, 5, 41, 2306, 8143397, 94592167328105, 13345346031444632841427643906, 258159204435047592104207508169153297050209383336364487461
Offset: 0
Examples
a(2) = a(1)^2 + a(0)^4 = 1^2 + 1^4 = 2. a(3) = a(2)^2 + a(1)^4 = 2^2 + 1^4 = 5. a(4) = a(3)^2 + a(2)^4 = 5^2 + 2^4 = 41. a(5) = a(4)^2 + a(3)^4 = 41^2 + 5^4 = 2306. a(6) = a(5)^2 + a(4)^4 = 2306^2 + 41^4 = 8143397. a(7) = a(6)^2 + a(5)^4 = 8143397^2 + 2306^4 = 94592167328105.
Links
- Robert Israel, Table of n, a(n) for n = 0..13
- Karl Petersen, Ibrahim Salama, Tree shift complexity, arXiv:1712.02251 [math.DS], 2017.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Programs
-
Maple
A[0]:= 1: A[1]:= 1: for n from 2 to 10 do A[n]:= A[n-1]^2 + A[n-2]^4; od: seq(A[i],i=0..10); # Robert Israel, Aug 21 2017
-
Mathematica
RecurrenceTable[{a[n] == a[n-1]^2 + a[n-2]^4, a[0] ==1, a[1] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *) NestList[{#[[2]],#[[1]]^4+#[[2]]^2}&,{1,1},10][[All,1]] (* Harvey P. Dale, Jul 03 2021 *)
-
PARI
{a(n) = if( n<2, 1, a(n-1)^2 + a(n-2)^4)}
-
PARI
{a=[0,0];for(n=1,99,iferr(a=[a[2],log(exp(a*[4,0;0,2])*[1,1]~)],E,return([n,exp(a[2]/2^n)])))} \\ To compute an approximation of the constant c1 = exp(lim_{n->oo} (log a(n))/2^n). \\ M. F. Hasler, May 21 2017
-
PARI
a=vector(20); a[1]=1;a[2]=2; for(n=3, #a, a[n]=a[n-1]^2+a[n-2]^4); concat(1, a) \\ Altug Alkan, Apr 04 2018
Formula
If b(n) = 1 + 1/b(n-1)^2, b(1)=1, then b(n) = a(n)/a(n-1)^2.
Lim_{n->inf} a(n)/a(n-1)^2 = A092526 (constant).
a(n) is asymptotic to c1^(2^n) * c2.
c1 = 1.2897512927198122075..., c2 = 1/A092526 = A263719 = (1/6)*(108 + 12*sqrt(93))^(1/3) - 2/(108 + 12*sqrt(93))^(1/3) = 0.682327803828019327369483739711... is the root of the equation c2*(1 + c2^2) = 1. - Vaclav Kotesovec, Dec 18 2014
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007
Comments