cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076732 Table T(n,k) giving number of ways of obtaining exactly one correct answer on an (n,k)-matching problem (1 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 2, 3, 1, 4, 9, 8, 1, 6, 21, 44, 45, 1, 8, 39, 128, 265, 264, 1, 10, 63, 284, 905, 1854, 1855, 1, 12, 93, 536, 2325, 7284, 14833, 14832, 1, 14, 129, 908, 5005, 21234, 65821, 133496, 133497, 1, 16, 171, 1424, 9545, 51264, 214459, 660064, 1334961, 1334960
Offset: 1

Views

Author

Mohammad K. Azarian, Oct 28 2002

Keywords

Comments

Hanson et al. define the (n,k)-matching problem in the following realistic way. A matching question on an exam has k questions with n possible answers to choose from, each question having a unique answer. If a student guesses the answers at random, using each answer at most once, what is the probability of obtaining r of the k correct answers?
The T(n,k) represent the number of ways of obtaining exactly one correct answer, i.e., r=1, given k questions and n possible answers, 1 <= k <= n.

Examples

			Triangle begins
  1;
  1,0;
  1,2,3;
  1,4,9,8;
  ...
		

Crossrefs

Columns: A000012(n), 2*A001477(n-2), 3*A002061(n-2), 4*A094792(n-4), 5*A094793(n-5), 6*A094794(n-6), 7*A094795(n-7); A000240(n), A000166(n). - Johannes W. Meijer, Jul 27 2011

Programs

  • Maple
    A076732:=proc(n,k): (k/(n-k)!)*A047920(n,k) end: A047920:=proc(n,k): add(((-1)^j)*binomial(k-1,j)*(n-1-j)!, j=0..k-1) end: seq(seq(A076732(n,k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 27 2011
  • Mathematica
    A000240[n_] := Subfactorial[n] - (-1)^n;
    T[n_, k_] := T[n, k] = Switch[k, 1, 1, n, A000240[n], _, k*T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 14 2023 *)

Formula

T(n,k) = F(n,k)*Sum{((-1)^j)*C(k-1, j)*(n-1-j)! (j=0 to k-1)}, where F(n,k) = k/(n-k)!, for 1 <= k <= n.
From Johannes W. Meijer, Jul 27 2011: (Start)
T(n,k) = k*T(n-1,k-1) + T(n-1,k) with T(n,1) = 1 and T(n,n) = A000240(n). [Hanson et al.]
T(n,k) = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) + (1-k)*A076731(n-2,k-2) + A076731(n-1,k-1) with T(0,0) = T(n,0) = 0 and T(n,1) = 1. [Hanson et al.]
T(n,k) = k*A060475(n-1,k-1).
T(n,k) = (k/(n-k)!)*A047920(n-1,k-1).
Sum_{k=1..n} T(n,k) = A193463(n); row sums.
Sum_{k=1..n} T(n,k)/k = A003470(n-1). (End)

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011