A076736 Let u(1) = u(2) = u(3) = 2, u(n) = (1 + u(n-1)*u(n-2))/u(n-3); then a(n) is the denominator of u(n).
1, 1, 1, 2, 1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576, 524288, 2097152
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Programs
-
Mathematica
LinearRecurrence[{0,2},{1,1,1,2,1},50] (* Harvey P. Dale, Aug 25 2015 *)
Formula
For n > 4, a(n) = 2^A028242(n-4).
From Colin Barker, Oct 14 2014: (Start)
For n > 5, a(n) = 2*a(n-2).
G.f.: x*(x-1)*(x^3+x^2+2*x+1) / (2*x^2-1). (End)
Extensions
More terms from Paul Barry, Apr 26 2004
Comments