cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A189936 Odd numbers in A076763.

Original entry on oeis.org

105, 165, 195, 255, 273, 315, 345, 357, 385, 399, 465, 483, 525, 555, 585, 627, 663, 693, 705, 735, 765, 777, 795, 897, 915, 957, 975, 1005, 1095, 1113, 1155, 1173, 1185, 1281, 1295, 1305, 1353, 1365, 1515, 1545, 1575, 1617, 1677, 1683, 1725, 1755, 1785, 1815, 1935, 1953
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 01 2011

Keywords

Crossrefs

Programs

  • Maple
    omega := proc(n) nops( numtheory[factorset](n)) ; end proc:
    isA076763 := proc(n) omega(n) > omega(n-1) and omega(n) > omega(n+1) ; end proc:
    isA189936 := proc(n) type(n,'odd') and isA076763(n) ; end proc:
    for n from 1 to 2000 by 2 do if isA189936(n) then printf("%d,",n) ; end if; end do;  # R. J. Mathar, May 26 2011
  • Mathematica
    Select[Range[1, 2000, 2], PrimeNu[# - 1] < PrimeNu[#] > PrimeNu[# + 1]&] (* Jean-François Alcover, Nov 14 2016 *)
    Select[#[[2,1]]&/@Select[Partition[Table[{n,PrimeNu[n]},{n,2000}],3,1], #[[1,2]] <#[[2,2]]>#[[3,2]]&],OddQ] (* Harvey P. Dale, Sep 15 2019 *)

Formula

a(n) = A005408(k) = A076763(m).

Extensions

Corrected by R. J. Mathar, May 26 2011

A101934 Numbers n with omega(n) smaller than omega(n-1) and omega(n+1).

Original entry on oeis.org

11, 13, 19, 23, 25, 27, 29, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 131, 137, 139, 149, 151, 155, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227
Offset: 1

Views

Author

Neil Fernandez, Dec 21 2004

Keywords

Examples

			125 is in the sequence because it has one unique prime factor (5), which is fewer than its neighbors 124 (two such factors, namely 2 and 31) and 126 (two such factors, namely 2 and 53).
		

Crossrefs

Programs

  • Mathematica
    For[i=2, i<1000, If[And[Length[FactorInteger[i 1]]>Length[FactorInteger[i]], Length[FactorInteger[i+1]] > Length[FactorInteger[i]]], Print[i]];i++ ]
    (* Second program: *)
    Select[Range[1000], PrimeNu[#] < Min[PrimeNu[#-1], PrimeNu[#+1]]&] (* Jean-François Alcover, Nov 14 2016 *)
    Flatten[Position[Partition[PrimeNu[Range[250]],3,1],?(#[[1]]>#[[2]]<#[[3]]&),1,Heads->False]]+1 (* _Harvey P. Dale, Apr 18 2021 *)

A101937 Numbers n with omega(n) > omega of 2 nearest larger and 2 nearest smaller neighbors.

Original entry on oeis.org

6, 30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 150, 165, 174, 186, 190, 195, 198, 204, 210, 234, 246, 252, 255, 270, 273, 276, 290, 294, 300, 315, 318, 322, 330, 336, 345, 354, 357, 360, 385, 390, 396, 399, 402, 414, 420
Offset: 1

Views

Author

Neil Fernandez, Dec 21 2004

Keywords

Comments

Prime factors counted without multiplicity. - Harvey P. Dale, Dec 17 2014

Examples

			150 is in the sequence because it has three unique prime factors (2,3 and 5), whereas 148, 149, 151 and 152 each have fewer.
		

Crossrefs

Programs

  • Mathematica
    For[i=2, i<1000, If[And[Length[FactorInteger[i-2]]{a,b,d,e}]; Flatten[Position[ Partition[ PrimeNu[Range[500]],5,1],?(gr3Q[#]&)]]+2 (* _Harvey P. Dale, Dec 17 2014 *)

A101939 Numbers n with omega(n) > omega of 3 nearest larger and 3 nearest smaller neighbors.

Original entry on oeis.org

6, 30, 42, 60, 66, 70, 78, 84, 90, 110, 114, 120, 126, 150, 174, 186, 190, 204, 210, 246, 290, 294, 300, 322, 330, 336, 385, 390, 414, 420, 450, 462, 510, 540, 546, 570, 630, 660, 690, 714, 720, 770, 780, 786, 798, 840, 846, 858, 870, 910
Offset: 1

Views

Author

Neil Fernandez, Dec 21 2004

Keywords

Examples

			6 is in the sequence because it has two unique prime factors (2 and 3) whereas 3, 4, 5, 7, 8 and 9 each have fewer.
		

Crossrefs

Programs

  • Mathematica
    For[i=3, i<1000, If[And[Length[FactorInteger[i-3]] < Length[FactorInteger[i]], Length[FactorInteger[i-2]] < Length[FactorInteger[i]], Length[FactorInteger[i-1]] < Length[FactorInteger[i]], Length[FactorInteger[i+1]] < Length[FactorInteger[i]], Length[FactorInteger[i+2]] < Length[FactorInteger[i]], Length[FactorInteger[i+3]] < Length[FactorInteger[i]]], Print[i]]; i++]
    Clear[noQ];noQ[n_]:=And@@(#?noQ]]+ 3 (* _Harvey P. Dale, Mar 05 2012 *)
    Select[Range[650], PrimeNu[#] > Max[PrimeNu[# - 1], PrimeNu[# - 2], PrimeNu[# - 3], PrimeNu[# + 1], PrimeNu[# + 2], PrimeNu[# + 3]] &] (* G. C. Greubel, May 21 2017 *)
Showing 1-4 of 4 results.