cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076822 Number of partitions of the n-th triangular number involving only the numbers 1..n and with exactly n terms.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 0

Views

Author

Jon Perry, Nov 19 2002

Keywords

Comments

Asymptotic to (sqrt(3)/(2*Pi))*(4^n/n^2). It is the number of lattice paths from (0,0) to (n,n-1) with steps only to the right or upward and having area n(n-1)/2 between the path and the x-axis. In the reference by Takács use formula (77) with a=n, b=n(n-1)/2 and then Stirling's formula. - Kent E. Morrison, May 28 2016
a(n) is the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of numbers between 1 and n. - Felix Huber, Aug 02 2024

Examples

			a(4)=5 as T(4)=10= 1+1+4+4 =1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
		

Crossrefs

Cf. A002838. [From R. J. Mathar, Sep 20 2008]
Cf. A188181 (columns 1, 2).

Programs

  • JavaScript
    ccc=new Array(); cccc=0;
    for (n=1; n<11; n++)
    {
        str='cc=0; for (i1=1; i1<'+(n+1)+'; i1++)';
        str2='i1';
        str3='i1';
        tn=1;
        for (i=2; i<=n; i++)
        {
            str+='for (i'+i+'=i'+(i-1)+'; i'+i+'<'+(n+1)+'; i'+i+'++)';
            str2+='+i'+i;
            str3+=', ", ", i'+i;
            tn+=i;
        }
        str+='if ('+str2+'=='+tn+') document.print(++cc, ":", '+str3+', "
    ")'; eval(str); ccc[cccc++ ]=cc; document.print('****
    '); } document.write(ccc);
  • Mathematica
    f[n_] := Block[{p = IntegerPartitions[n(n + 1)/2, n]}, Length[ Select[p, Length[ # ] == n &]]]; Table[ f[n], {n, 1, 13}]

Formula

a(n) = A067059(n,n+1); also a(n) = T[n*(n-1)/2, n-1, n] with T[ ] defined as in A047993. - Martin Fuller, Jun 27 2006

Extensions

Edited and extended to 12 terms by Robert G. Wilson v, Nov 23 2002
Further terms from Max Alekseyev, May 24 2007
a(0)=1 prepended by Alois P. Heinz, May 28 2016