A076822 Number of partitions of the n-th triangular number involving only the numbers 1..n and with exactly n terms.
1, 1, 1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 0
Keywords
Examples
a(4)=5 as T(4)=10= 1+1+4+4 =1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
Links
- Max Alekseyev and Alois P. Heinz, Table of n, a(n) for n = 0..240 (terms n=1..100 from Max Alekseyev)
- L. Takács, Some asymptotic formulas for lattice paths, J. Statist. Plann. Inference, 14 (1986), 123-142.
Crossrefs
Programs
-
JavaScript
ccc=new Array(); cccc=0; for (n=1; n<11; n++) { str='cc=0; for (i1=1; i1<'+(n+1)+'; i1++)'; str2='i1'; str3='i1'; tn=1; for (i=2; i<=n; i++) { str+='for (i'+i+'=i'+(i-1)+'; i'+i+'<'+(n+1)+'; i'+i+'++)'; str2+='+i'+i; str3+=', ", ", i'+i; tn+=i; } str+='if ('+str2+'=='+tn+') document.print(++cc, ":", '+str3+', "
")'; eval(str); ccc[cccc++ ]=cc; document.print('****
'); } document.write(ccc); -
Mathematica
f[n_] := Block[{p = IntegerPartitions[n(n + 1)/2, n]}, Length[ Select[p, Length[ # ] == n &]]]; Table[ f[n], {n, 1, 13}]
Formula
a(n) = A067059(n,n+1); also a(n) = T[n*(n-1)/2, n-1, n] with T[ ] defined as in A047993. - Martin Fuller, Jun 27 2006
Extensions
Edited and extended to 12 terms by Robert G. Wilson v, Nov 23 2002
Further terms from Max Alekseyev, May 24 2007
a(0)=1 prepended by Alois P. Heinz, May 28 2016
Comments