A076841 a(1) = a(2) = 1; a(n) = (a(n-1)+1)/a(n-2) (for n>2, n odd), (a(n-1)^3+1)/a(n-2) (for n>2, n even).
1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2, 9, 5, 14, 3, 2, 1, 1, 2
Offset: 1
Keywords
Links
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras II: Finite type classification
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Maple
a := 1; b := 1; f := proc(n) option remember; global a,b; if n=1 then RETURN(a); fi; if n=2 then RETURN(b); fi; if n mod 2 = 1 then RETURN((f(n-1)+1)/f(n-2)); fi; RETURN((f(n-1)^3+1)/f(n-2)); end;
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{1, 1, 2, 9, 5, 14, 3, 2},99] (* Ray Chandler, Aug 25 2015 *)
Comments