A005316 Meandric numbers: number of ways a river can cross a road n times.
1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, 13820, 30694, 110954, 252939, 933458, 2172830, 8152860, 19304190, 73424650, 176343390, 678390116, 1649008456, 6405031050, 15730575554, 61606881612, 152663683494, 602188541928, 1503962954930, 5969806669034, 15012865733351, 59923200729046, 151622652413194, 608188709574124, 1547365078534578, 6234277838531806, 15939972379349178, 64477712119584604, 165597452660771610, 672265814872772972, 1733609081727968492, 7060941974458061392
Offset: 0
References
- Alon, Noga and Maass, Wolfgang, Meanders and their applications in lower bounds arguments. Twenty-Seventh Annual IEEE Symposium on the Foundations of Computer Science (Toronto, ON, 1986). J. Comput. System Sci. 37 (1988), no. 2, 118-129.
- V. I. Arnol'd, A branched covering of CP^2->S^4, hyperbolicity and projective topology [ Russian ], Sibir. Mat. Zhurn., 29 (No. 2, 1988), 36-47 = Siberian Math. J., 29 (1988), 717-725.
- V. I. Arnol'd, ed., Arnold's Problems, Springer, 2005; Problem 1989-18.
- B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, ACM Transactions on Algorithms, Vol. 6, No. 2, 2010, article #42.
- Di Francesco, P. The meander determinant and its generalizations. Calogero-Moser-Sutherland models (Montreal, QC, 1997), 127-144, CRM Ser. Math. Phys., Springer, New York, 2000.
- Di Francesco, P., SU(N) meander determinants. J. Math. Phys. 38 (1997), no. 11, 5905-5943.
- Di Francesco, P. Truncated meanders. Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 135-162, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.
- Di Francesco, P. Meander determinants. Comm. Math. Phys. 191 (1998), no. 3, 543-583.
- Di Francesco, P. Exact asymptotics of meander numbers. Formal power series and algebraic combinatorics (Moscow, 2000), 3-14, Springer, Berlin, 2000.
- Di Francesco, P., Golinelli, O. and Guitter, E., Meanders. In The Mathematical Beauty of Physics (Saclay, 1996), pp. 12-50, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997.
- Di Francesco, P., Golinelli, O. and Guitter, E. Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186 (1997), no. 1, 1-59.
- Di Francesco, P., Guitter, E. and Jacobsen, J. L. Exact meander asymptotics: a numerical check. Nuclear Phys. B 580 (2000), no. 3, 757-795.
- Franz, Reinhard O. W. A partial order for the set of meanders. Ann. Comb. 2 (1998), no. 1, 7-18.
- Franz, Reinhard O. W. and Earnshaw, Berton A. A constructive enumeration of meanders. Ann. Comb. 6 (2002), no. 1, 7-17.
- Isakov, N. M. and Yarmolenko, V. I. Bounded meander approximations. (Russian) Qualitative and approximate methods for the investigation of operator equations (Russian), 71-76, 162, Yaroslav. Gos. Univ., 1981.
- Lando, S. K. and Zvonkin, A. K. Plane and projective meanders. Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).
- Lando, S. K. and Zvonkin, A. K. Meanders. In Selected translations. Selecta Math. Soviet. 11 (1992), no. 2, 117-144.
- Makeenko, Y., Strings, matrix models and meanders. Theory of elementary particles (Buckow, 1995). Nuclear Phys. B Proc. Suppl. 49 (1996), 226-237.
- A. Panayotopoulos, On Meandric Colliers, Mathematics in Computer Science, (2018). https://doi.org/10.1007/s11786-018-0389-6.
- A. Phillips, Simple Alternating Transit Mazes, unpublished. Abridged version appeared as La topologia dei labirinti, in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
- J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..55 (first 44 terms from Iwan Jensen)
- V. I. Arnold, Problem: continue the sequence 1, 1, 2, 3, 8, 14, 42, 81..., Manuscript.
- David Bevan, Open Meanders [From _David Bevan_, Jun 25 2010]
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995; Combinatorics and physics (Marseilles, 1995). Math. Comput. Modelling 26 (1997), no. 8-10, 97-147.
- Di Francesco, P., Golinelli, O. and Guitter, E., Meanders: exact asymptotics, Nuclear Phys. B 570 (2000), no. 3, 699-712.
- Di Francesco, P., Golinelli, O. and Guitter, E., Meanders: a direct enumeration approach, arXiv:cond-mat/9910453 [cond-mat.stat-mech], 1999-2000; Nuclear Phys. B 482 (1996), no. 3, 497-535.
- Andrew Howroyd, C# Software for the enumeration of meanders
- Benedict Irwin, On the Number of k-Crossing Partitions, Univ. of Cambridge (2021).
- I. Jensen, Home page
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, arXiv:cond-mat/0008178 [cond-mat.stat-mech], 2000.
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- I. Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- I. Jensen, Open meanders, a(n) for n = 0..43
- I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
- M. La Croix, Approaches to the Enumerative Theory of Meanders [From _Gerald McGarvey_, Oct 26 2008]
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303. (Annotated scanned copy)
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- S. Legendre, Foldings and Meanders, Aust. J. Comb. 58(2), 275-291, 2014; and also on arXiv, arXiv:1302.2025 [math.CO], 2013.
- A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
- A. Phillips, Mazes
- A. Phillips, Simple, Alternating, Transit Mazes
- Frank Ruskey, Information on Stamp Foldings
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
- M. Skrzypczak and P. Pokorski, Illustration of a(10)
- N. J. A. Sloane, Illustration of initial terms
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Crossrefs
Extensions
Computed to n = 43 by Iwan Jensen
Comments