A077055
Call two meanders from A005316 equivalent if they differ by a reflection in the Y axis (if n even) or by reflections in the X or Y axes (if n odd). Sequence gives number of inequivalent meanders with n crossings.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 13, 42, 72, 273, 475, 1970, 3506, 15368, 27888, 126510, 233809, 1086546, 2039564, 9652364, 18360296, 88172609, 169610371, 824506191, 1601297937, 7865294687, 15401847339, 76331857094, 150547538649, 751981532942, 1492452957398
Offset: 0
For n=7 the A005316(7) = 42 meanders with 7 crossings fall into 5 equivalence classes of size 2 and 8 of size 4, so a(7) = 5+8 = 13.
- N. J. A. Sloane, Table of n, a(n) for n = 0..42 [from Legendre, 2013]
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- Stéphane Legendre, Illustration of initial terms
- Stéphane Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025 [math.CO], 2013.
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
A077056
Total number of "humps" in all A005316(2n) open meanders with 2n crossings.
Original entry on oeis.org
0, 1, 4, 22, 140, 992, 7584, 61420, 520320, 4570292, 41354416, 383609434, 3634231140, 35059333218, 343580813492, 3413862553800, 34336784362232, 349131316634164, 3584622273967324, 37128374058146138, 387630493693010928, 4076329834240413392, 43150916852592230992
Offset: 0
The three open meanders with 4 crossings have respectively 2, 1 and 1 humps, so a(2) = 4.
A078592
Call two meanders from A005316 with 2n crossings equivalent if they differ by reflections in the X or Y axes. Sequence gives number of inequivalent meanders.
Original entry on oeis.org
1, 1, 2, 8, 42, 273, 1970, 15368, 126510, 1086546, 9652364, 88172609, 824506191, 7865294687, 76331857094, 751981532942, 7506432993145, 75811326673326, 773682540353704, 7969986193751019, 82798726340037900, 866804540900696571
Offset: 0
A107321
a(n)=Sum(i+j+k+l+...+r+s=n) A005316(i)*A005316(j)*...*A005316(s) and the ordered partition of n runs over all odd i, all even j,k,.., r, all i,j,...,r,s>=1.
Original entry on oeis.org
1, 1, 2, 3, 8, 14, 42, 79, 254, 506, 1702, 3548, 12320, 26666, 94794, 211751, 766362, 1758352, 6453812, 15150922, 56238710, 134659120
Offset: 0
A005315
Closed meandric numbers (or meanders): number of ways a loop can cross a road 2n times.
Original entry on oeis.org
1, 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458, 8152860, 73424650, 678390116, 6405031050, 61606881612, 602188541928, 5969806669034, 59923200729046, 608188709574124, 6234277838531806, 64477712119584604, 672265814872772972, 7060941974458061392
Offset: 0
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
- S. K. Lando and A. K. Zvonkin, Meanders, Selecta Mathematica Sovietica, Vol. 11, Number 2, pp. 117-144, 1992.
- A. Phillips, Simple Alternating Transit Mazes, preprint. Abridged version appeared as "La topologia dei labirinti," in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
- V. R. Pratt, personal communication.
- J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- For additional references, see A005316.
- Andrew Howroyd, Table of n, a(n) for n = 0..28 (first 24 terms from Iwan Jensen)
- Oswin Aichholzer, Carlos Alegría Galicia, Irene Parada, Alexander Pilz, Javier Tejel, Csaba D. Tóth, Jorge Urrutia, and Birgit Vogtenhuber, Hamiltonian meander paths and cycles on bichromatic point sets, XVIII Spanish Meeting on Computational Geometry (Girona, 2019).
- V. I. Arnol'd, A branched covering of CP^2->S^4, hyperbolicity and projective topology [ Russian ], Sibir. Mat. Zhurn., 29 (No. 2, 1988), 36-47 = Siberian Math. J., 29 (1988), 717-725.
- Roland Bacher, Meander algebras
- David Bevan, Random Closed Meanders - _David Bevan_, Jun 25 2010
- Alexander E. Black, Kevin Liu, Alex Mcdonough, Garrett Nelson, Michael C. Wigal, Mei Yin, and Youngho Yoo, Sampling planar tanglegrams and pairs of disjoint triangulations, arXiv:2304.05318 [math.CO], 2023.
- B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, Transactions on Algorithms, Vol. 6 No. 2 (2010) article #42, 12 pages.
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 525.
- Reinhard O. W. Franz, and Berton A. Earnshaw, A constructive enumeration of meanders, Ann. Comb. 6 (2002), no. 1, 7-17.
- Erich Friedman, Illustration of initial terms
- Motohisa Fukuda, Ion Nechita, Enumerating meandric systems with large number of components, arXiv preprint arXiv:1609.02756 [math.CO], 2016.
- Iwan Jensen, Home page
- Iwan Jensen, Closed meanders, a(n) for n = 1..24
- Iwan Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- Iwan Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- Iwan Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
- Michael La Croix, Approaches to the Enumerative Theory of Meanders, 2003.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303. (Annotated scanned copy)
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
- A. Panayotopoulos, On Meandric Colliers, Mathematics in Computer Science, (2018).
- A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
- A. Phillips, Mazes
- A. Phillips, Simple, Alternating, Transit Mazes
- J. A. Reeds, D. E. Knuth, & N. J. A. Sloane, Email Correspondence
- J. Reeds, L. Shepp, & D. McIlroy, Numerical bounds for the Arnol'd "meander" constant, Preprint.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 47.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
A076875
Meandric numbers for a curve crossing two perpendicular lines at n points.
Original entry on oeis.org
1, 2, 4, 10, 22, 62, 176, 436
Offset: 0
See illustration for a(4)=22: each of the 12 solutions shown crosses the x-axis first and ten of them are related by mirror symmetry to a corresponding curve that crosses the y-axis first, making the total a(4)=22.
a(6) and a(7) corrected Aug 23 2003
A076876
Meandric numbers for a river crossing two parallel roads at n points.
Original entry on oeis.org
1, 1, 2, 3, 8, 14, 43, 81, 272, 538, 1920, 3926, 14649, 30694, 118489, 252939, 1002994, 2172830, 8805410, 19304190, 79648888, 176343390, 738665040, 1649008456, 6996865599, 15730575554, 67491558466, 152663683494, 661370687363, 1503962954930, 6571177867129
Offset: 0
Let b(n) = A005316(n). Then a(0) = b(0), a(1) = b(1), a(2) = b(1) + b(2), a(3) = b(3) + b(2), a(4) = b(4) + 2*b(3) + 1, a(5) = b(5) + b(3)*b(2) + b(4) + 1.
Consider n=5: if we do not cross the second road there are b(5) = 8 solutions. If we cross the first road 3 times and then the second road twice there are b(3)*b(2) = 2 solutions. If we cross the first road once and the second road 4 times there are b(4) = 3 solutions. The only other possibility is to cross road 1, road 2 twice, road 1 twice and exit to the right.
For larger n it is convenient to give the vector of the number of times the same road is crossed. For example for n=6 the vectors and the numbers of possibilities are as follows:
[6] ...... 14
[5 1] ..... 8
[3 3] ..... 4
[3 2 1] ... 2
[1 5] ..... 8
[1 4 1] ... 3
[1 2 3] ... 2
[1 2 2 1] . 2
Total .... 43
A076907
Meandric numbers for a river crossing two perpendicular roads at n points, beginning in the (-,-) quadrant and ending in any quadrant.
Original entry on oeis.org
2, 2, 6, 10, 32, 62, 210, 436, 1540, 3346, 12192, 27344, 102054, 234388, 891574, 2085940, 8057844, 19134786, 74864648, 179968564, 711708544
Offset: 0
a(6) and a(7) corrected Aug 25 2003
A076906
Meandric numbers for a river (or directed line) crossing two perpendicular roads at n points, beginning in the (-,-) quadrant and ending in the (+,+) quadrant if n even, in the (+,-) quadrant if n odd.
Original entry on oeis.org
0, 1, 2, 5, 12, 31, 82, 218, 612, 1673, 4892, 13672, 41192, 117194, 361302, 1042970, 3274712, 9567393, 30490688, 89984282, 290353456
Offset: 0
a(7) corrected Aug 25 2003
a(7) corrected and a(8)-a(20) added by
Robert Price, Jul 29 2012
A209656
Meandric numbers for a river crossing up to 12 parallel roads at n points.
Original entry on oeis.org
1, 1, 2, 4, 10, 23, 63, 155, 448, 1152, 3452, 9158, 28178, 76538, 240368, 665100, 2123379, 5964156, 19301178, 54890366, 179679030, 516360755, 1706896545, 4949350203, 16500278295, 48216373545, 161946759019, 476447428528, 1610847688579, 4767486352733, 16213635060406
Offset: 0
Cf.
A005316 (sequence for one road; extensive references and links).
Cf.
A076876 (sequence for two parallel roads).
Cf.
A204352,
A208062,
A208126,
A208452,
A208453,
A209383,
A209621,
A209622,
A209626,
A209656,
A209657,
A209660,
A209707,
A210344,
A210478,
A210567,
A210592 (sequences for 3 to 19 parallel roads).
Cf.
A206432 (sequence for unlimited number of parallel roads).
Showing 1-10 of 52 results.
Comments