A076948 Smallest k such that nk-1 is a square, or 0 if no such number exists.
1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 10, 0, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 13, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a076948 1 = 1 a076948 n = if null qs then 0 else head qs where qs = filter ((> 0) . a037213 . subtract 1 . (* n)) [1..n] -- Reinhard Zumkeller, Oct 25 2015
-
Mathematica
a[n_] := Module[{r, j, k}, r = Solve[j>0 && k>0 && n k - 1 == j^2, {j, k}, Integers]; If[r === {}, Return[0], Return[k /. (r /. C[1] -> 0) // Min]]]; a[1] = 1; Array[a, 100] (* Jean-François Alcover, Apr 27 2020 *)
-
PARI
a(n) = if (!issquare(Mod(-1, n)), 0, my(k=1); while (!issquare(n*k-1), k++); k); \\ Michel Marcus, Apr 27 2020
Formula
a(n) != 0 if and only if n is a term of A008784. - Joerg Arndt, Apr 27 2020
a(n) = 1 if and only if n is a term of A002522. - Bernard Schott, Apr 27 2020
Extensions
Edited and extended by Robert G. Wilson v, Oct 21 2002