A076980 Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).
3, 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124, 1649, 2169, 2530, 4240, 5392, 6250, 7073, 8361, 16580, 18785, 20412, 23401, 32993, 60049, 65792, 69632, 93312, 94932, 131361, 178478, 262468, 268705, 397585, 423393, 524649, 533169, 1048976
Offset: 1
Keywords
Examples
a(9) = 177 because we can write 177 = 2^7 + 7^2.
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005.
Links
- Hans Havermann, Table of n, a(n) for n = 1..5000 (terms 1..1001 from T. D. Noe)
- Wikipedia, Leyland number.
Programs
-
Maple
N:= 10^7: # to get all terms <= N A:= {3}: for n from 2 to floor(N^(1/2)) do for k from 2 do a:= n^k + k^n; if a > N then break fi; A:= A union {a}; od od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Apr 13 2015
-
Mathematica
Take[Sort[Flatten[Table[x^y + y^x, {x, 2, 100}, {y, x, 100}]]], 42] (* Alonso del Arte, Apr 05 2006 *) nn=10^50; n=1; Union[Reap[While[n++; num=2*n^n; num
Extensions
More terms from Benoit Cloitre, Oct 24 2002
More terms from Alonso del Arte, Apr 05 2006
Comments