cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2004

Keywords

Comments

Contains A061119 as a subsequence.

Examples

			2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
		

Crossrefs

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    A:= {3}:
    for n from 2 while 2*n^n < N do
      for k from n+1 do if igcd(n,k)=1 then
         a:= n^k + k^n;
         if a > N then break fi;
         if isprime(a) then A:= A union {a} fi fi;
      od
    od:
    A; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 13 2015
  • Mathematica
    a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
    Prepend[Flatten[Map[Function[n, Map[Function[m, If[PrimeQ[m^n + n^m], m^n + n^m, Sequence[], Nothing]], Range[2, n]]], Range[2, 50]], 1], 3]//Union (* Mikk Heidemaa, Mar 27 2025 *)
  • PARI
    f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
    list(lim)=my(v=List()); for(x=2,f(lim/2), my(y=x+1,t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v,t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015

A051442 a(n) = n^(n+1)+(n+1)^n.

Original entry on oeis.org

1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
Offset: 0

Views

Author

Keywords

Comments

Odd prime p divides a(p-2). For n>1, a(prime(n)-2)/prime(n) = A125074(n) = {1, 29, 3343, 407889491, 298572057493, 454195874136455153, ...}. Prime p divides a((p+5)/2) for p = {19, 23, 61}. - Alexander Adamchuk, Nov 18 2006
From Mathew Englander, Jul 08 2020: (Start)
For all n != 1, a(n) mod 8 = 1.
If n mod 6 = 0, 3, or 5, then a(n) mod 6 = 1. If n mod 6 = 1, then a(n) mod 6 = 3. If n mod 6 = 2 or 4, then a(n) mod 6 = 5.
For all n, a(n)-1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs, see the Englander link. (End)

Crossrefs

Programs

Formula

a(n) = (n + e + o(1)) * n^n. - Charles R Greathouse IV, Jan 12 2012
From Mathew Englander, Jul 08 2020: (Start)
a(n) = A093898(n+1, n) for n >= 1.
a(n) = a(n-1) + A258389(n) for n >= 1.
a(n) = A007778(n) + A000169(n+1).
(End)

A173054 Numbers of the form x^y + y^x, 1 < x < y.

Original entry on oeis.org

17, 32, 57, 100, 145, 177, 320, 368, 593, 945, 1124, 1649, 2169, 2530, 4240, 5392, 7073, 8361, 16580, 18785, 20412, 23401, 32993, 60049, 65792, 69632, 94932, 131361, 178478, 262468, 268705, 397585, 423393, 524649, 533169, 1048976, 1058576
Offset: 1

Views

Author

Keywords

Examples

			17 is in the sequence because 17 = 2^3 + 3^2.
		

Crossrefs

Programs

  • Mathematica
    f[a_,b_]:=a^b+b^a; Take[Union[Flatten[Table[f[a,b],{a,2,50},{b,a+1,50}]]],80]
    nn=10^50; n=1; Union[Reap[While[n++; k=n+1; num=n^k+k^n; num
    				

A055652 Table T(m,k)=m^k+k^m (with 0^0 taken to be 1) as square array read by antidiagonals.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2000

Keywords

Crossrefs

Columns and rows are A000012 (apart from first term), A000027, A001580, A001585, A001589, A001593 etc. Diagonals include A013499 (apart from first two terms), A051442, A051489.
Cf. A055651.
Contribution from Franklin T. Adams-Watters, Oct 26 2009: (Start)
Main diagonal is 2 * A000312. More diagonals: A051442, A051489, A155539.
Cf. A076980, A156353, A156354. (End)

Formula

E.g.f. Sum(n,m, T(n,m)/(n! m!)) = e^(x e^y) + e^(y e^x). [From Franklin T. Adams-Watters, Oct 26 2009]

A045575 Nonnegative numbers of the form x^y - y^x, for x,y > 1.

Original entry on oeis.org

0, 1, 7, 17, 28, 79, 118, 192, 399, 431, 513, 924, 1844, 1927, 2800, 3952, 6049, 7849, 8023, 13983, 16188, 18954, 32543, 58049, 61318, 61440, 65280, 130783, 162287, 175816, 255583, 261820, 357857, 523927, 529713, 1038576, 1048176
Offset: 1

Views

Author

Keywords

Comments

Pillai proved that there are ~ 0.5 * (log x)^2/(log log x)^2 terms of this sequence up to x. - Charles R Greathouse IV, Jul 20 2017
Conjecture: For d > 11, 10^d - d^10 is the largest (base-ten) d-digit term. - Hans Havermann, Jun 12 2023

References

  • S. S. Pillai, On the indeterminate equation x^y - y^x = a, Journal Annamalai University 1, Nr. 1, (1932), pp. 59-61. Cited in Waldschmidt 2009.

Crossrefs

Cf. A076980.

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    A:= (0,1):
    for x from 2 while x^(x+1) - (x+1)^x <= N do
       for y from x+1 do
          z:= x^y - y^x;
          if z > N then break
          elif z > 0 then A:=A,z;
          fi
    od od:
    {A}; # Robert Israel, Aug 20 2014
  • Mathematica
    Union[Flatten[Table[If[a^b-b^a>-1&&a^b-b^a<10^6*2,a^b-b^a],{a,1,123},{b,a,144}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2008 *)
    nn=10^50; n=1; Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num
    				
  • PARI
    list(lim)=my(v=List([0]),t); for(x=2,max(logint(lim\=1,2)+1,6), for(y=2,x-1, t=abs(x^y-y^x); if(t<=lim&&t, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jul 20 2017

A155539 a(n) = n^(n+3) + (n+3)^n.

Original entry on oeis.org

1, 5, 57, 945, 18785, 423393, 10609137, 292475249, 8804293473, 287589316833, 10137858491849, 383799398752905, 15536767912476993, 669920208810550337, 30659724555890596833, 1484638520651877849057, 75846305139481944586817
Offset: 0

Views

Author

Keywords

Comments

1^4 + 4^1 = 5, 2^5 + 5^2 = 57, ...

Crossrefs

Programs

  • Magma
    [n^(n+3)+(n+3)^n: n in [0..20] ]; // Vincenzo Librandi, Aug 25 2011
  • Mathematica
    lst={};Do[m=n+3;q=n^m+m^n;AppendTo[lst,q],{n,0,4!}];lst
    Table[n^(n+3)+(n+3)^n,{n,0,20}] (* Harvey P. Dale, Aug 18 2024 *)

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 24 2011

A173055 Numbers of the form a^b+b^a, a and b are odd primes, b > a.

Original entry on oeis.org

368, 2530, 94932, 178478, 1596520, 48989176, 129145076, 1162268326, 1221074418, 1996813914, 94143190994, 96951758924, 762940872982, 19073488804224, 36314872537968, 68630377389272, 232630924325880, 617673396313738
Offset: 1

Views

Author

Keywords

Comments

3^5 + 5^3 = 368, 3^7 + 7^3 = 2530, 5^7 + 7^5 = 94932,..

Crossrefs

Programs

  • Mathematica
    f[a_,b_]:=Prime[a]^Prime[b]+Prime[b]^Prime[a]; Take[Union[Flatten[Table[f[a,b],{a,2,60},{b,a+1,60}]]],40]

A386892 Numbers k expressible as x^y + y^z + z^x, where x, y, and z are integers > 1.

Original entry on oeis.org

12, 21, 36, 44, 61, 81, 89, 104, 105, 166, 172, 181, 276, 288, 289, 324, 395, 401, 480, 597, 673, 768, 773, 777, 932, 972, 1065, 1128, 1230, 1250, 1376, 1905, 2033, 2089, 2173, 2244, 2545, 2557, 3182, 3388, 3493, 4148, 4244, 4368, 4393, 4652, 4774
Offset: 1

Views

Author

Ian Hahus, Aug 06 2025

Keywords

Examples

			a(7) = 89, which can be given by x=4, y=3, z=2.
		

Crossrefs

Cf. A123207 (subsequence of primes).
Cf. A076980.

Programs

  • PARI
    upto(lim) = { my(L=List()); for(x=2, logint(lim,2), for(y=2, min(x,logint(lim,x)), for(z=2, min(x,logint(lim,y)), my(t=x^y+y^z+z^x); if(t<=lim, listput(L,t)) ))); Set(L) } \\ Andrew Howroyd, Aug 06 2025

A173056 Numbers of the form a^b+b^a, a and b are primes.

Original entry on oeis.org

8, 17, 54, 57, 177, 368, 2169, 2530, 6250, 8361, 94932, 131361, 178478, 524649, 1596520, 1647086, 8389137, 48989176, 129145076, 536871753, 1162268326, 1221074418, 1996813914, 2147484609, 94143190994, 96951758924, 137438954841
Offset: 1

Views

Author

Keywords

Comments

2^2+2^2=8, 2^3+3^2=17, 3^3+3^3=54, 2^5+5^2=57, 2^7+7^2=177, 3^5+5^3=368,..

Crossrefs

Programs

  • Mathematica
    nMax=10^12; lim=PrimePi[Log[2, nMax]]; f[a_,b_]:=Prime[a]^Prime[b] + Prime[b]^Prime[a]; Select[Union[Flatten[Table[f[a,b], {a,lim}, {b,lim}]]], #<=nMax&]
    nMax=10^12; lim=PrimePi[Log[2, nMax]]; Select[Union[First[#]^Last[#] + Last[#]^First[#]&/@ Tuples[Prime[Range[lim]],{2}]], #<=nMax&]  (* Harvey P. Dale, Mar 12 2011 *)

A160814 a(1) = 1; a(n+1) = a(n)^n + n^a(n).

Original entry on oeis.org

1, 2, 8, 7073
Offset: 1

Views

Author

Keywords

Comments

Next term is too large to display: 2.3459495195697547514*10^4258
The next term (a(5)) has 4259 digits. - Harvey P. Dale, Jul 18 2021

Crossrefs

Cf. A093898, A055652, A076980. - R. J. Mathar, May 29 2009

Programs

  • Mathematica
    a=1;lst={};Do[a=a^n+n^a;AppendTo[lst,IntegerPart[a]],{n,0,4}];lst
    nxt[{n_, a_}] := {n + 1, a^n + n^a}; NestList[nxt, {1, 1}, 4][[All, 2]] (* Harvey P. Dale, Jul 18 2021 *)

Extensions

Edited by N. J. A. Sloane, May 29 2009
Showing 1-10 of 16 results. Next