cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051442 a(n) = n^(n+1)+(n+1)^n.

Original entry on oeis.org

1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
Offset: 0

Views

Author

Keywords

Comments

Odd prime p divides a(p-2). For n>1, a(prime(n)-2)/prime(n) = A125074(n) = {1, 29, 3343, 407889491, 298572057493, 454195874136455153, ...}. Prime p divides a((p+5)/2) for p = {19, 23, 61}. - Alexander Adamchuk, Nov 18 2006
From Mathew Englander, Jul 08 2020: (Start)
For all n != 1, a(n) mod 8 = 1.
If n mod 6 = 0, 3, or 5, then a(n) mod 6 = 1. If n mod 6 = 1, then a(n) mod 6 = 3. If n mod 6 = 2 or 4, then a(n) mod 6 = 5.
For all n, a(n)-1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs, see the Englander link. (End)

Crossrefs

Programs

Formula

a(n) = (n + e + o(1)) * n^n. - Charles R Greathouse IV, Jan 12 2012
From Mathew Englander, Jul 08 2020: (Start)
a(n) = A093898(n+1, n) for n >= 1.
a(n) = a(n-1) + A258389(n) for n >= 1.
a(n) = A007778(n) + A000169(n+1).
(End)

A385232 Numbers that can be written as s^x + t^y, with 1 < s < t and {s,t} = {x,y}; that is, are of the form s^s + t^t or s^t + t^s.

Original entry on oeis.org

17, 31, 32, 57, 100, 145, 177, 260, 283, 320, 368, 593, 945, 1124, 1649, 2169, 2530, 3129, 3152, 3381, 4240, 5392, 7073, 8361, 16580, 18785, 20412, 23401, 32993, 46660, 46683, 46912, 49781, 60049, 65792, 69632, 94932, 131361, 178478, 262468, 268705, 397585, 423393, 524649, 533169, 823547, 823570
Offset: 1

Views

Author

Alberto Zanoni, Jun 28 2025

Keywords

Examples

			a(1) = 2^3 + 3^2 =  8 +  9 = 17.
a(2) = 2^2 + 3^3 =  4 + 27 = 31.
a(3) = 2^4 + 4^2 = 16 + 16 = 32.
a(4) = 2^5 + 5^2 = 32 + 25 = 57.
		

Crossrefs

Cf. A000312, A001597, A385233 (three addends).
Union of A173054 and A385614.

A385614 Numbers of the form x^x + y^y, 1 < x < y.

Original entry on oeis.org

31, 260, 283, 3129, 3152, 3381, 46660, 46683, 46912, 49781, 823547, 823570, 823799, 826668, 870199, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420493, 387420516, 387420745, 387423614, 387467145, 388244032, 404197705, 10000000004
Offset: 1

Views

Author

Sean A. Irvine, Jul 04 2025

Keywords

Comments

Terms are all combinations of 1 < x < y ordered by increasing y then increasing x, since the largest of one y is strictly less than the smallest of the next: (y-1)^(y-1) + y^y < 2^2 + (y+1)^(y+1) for y >= 3. - Kevin Ryde, Jul 06 2025

Examples

			31 is in the sequence because 31 = 2^2 + 3^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=2 + if(r>1, y=3 + s-(rKevin Ryde, Jul 06 2025
    
  • Python
    from math import isqrt, comb
    def A385614(n):
        y = (m:=isqrt(k:=n<<1))+(k>m*(m+1))+2
        x = n-comb(y-2,2)+1
        return x**x+y**y # Chai Wah Wu, Jul 07 2025

Formula

a(n) = x^x + y^y where x=A131818(n+1) and y=A133196(n). - Kevin Ryde, Jul 06 2025

A173055 Numbers of the form a^b+b^a, a and b are odd primes, b > a.

Original entry on oeis.org

368, 2530, 94932, 178478, 1596520, 48989176, 129145076, 1162268326, 1221074418, 1996813914, 94143190994, 96951758924, 762940872982, 19073488804224, 36314872537968, 68630377389272, 232630924325880, 617673396313738
Offset: 1

Views

Author

Keywords

Comments

3^5 + 5^3 = 368, 3^7 + 7^3 = 2530, 5^7 + 7^5 = 94932,..

Crossrefs

Programs

  • Mathematica
    f[a_,b_]:=Prime[a]^Prime[b]+Prime[b]^Prime[a]; Take[Union[Flatten[Table[f[a,b],{a,2,60},{b,a+1,60}]]],40]

A173056 Numbers of the form a^b+b^a, a and b are primes.

Original entry on oeis.org

8, 17, 54, 57, 177, 368, 2169, 2530, 6250, 8361, 94932, 131361, 178478, 524649, 1596520, 1647086, 8389137, 48989176, 129145076, 536871753, 1162268326, 1221074418, 1996813914, 2147484609, 94143190994, 96951758924, 137438954841
Offset: 1

Views

Author

Keywords

Comments

2^2+2^2=8, 2^3+3^2=17, 3^3+3^3=54, 2^5+5^2=57, 2^7+7^2=177, 3^5+5^3=368,..

Crossrefs

Programs

  • Mathematica
    nMax=10^12; lim=PrimePi[Log[2, nMax]]; f[a_,b_]:=Prime[a]^Prime[b] + Prime[b]^Prime[a]; Select[Union[Flatten[Table[f[a,b], {a,lim}, {b,lim}]]], #<=nMax&]
    nMax=10^12; lim=PrimePi[Log[2, nMax]]; Select[Union[First[#]^Last[#] + Last[#]^First[#]&/@ Tuples[Prime[Range[lim]],{2}]], #<=nMax&]  (* Harvey P. Dale, Mar 12 2011 *)

A173058 Leyland numbers (Cubes), a^b+b^a, a and b > 1.

Original entry on oeis.org

8, 512, 1056589062271330492704679569833033213037694652072243044255921418053347805113449718948834511775314375789348789986514257357764695119005371074501077956925879153816773367998010168337463035352852882106048465816422376808296056585503123477676793797534072952979077161795475996672
Offset: 1

Views

Author

Keywords

Examples

			2^3=8, 8^3=512,
101851798816724304313422284420468908052573419683296812531807022467719064988166\
8353091698688^3=1056...6672
		

Crossrefs

Programs

  • Mathematica
    f[a_,b_]:=a^b+b^a; Select[Union[Flatten[Table[f[a,b],{a,2,150},{b,2,150}]]],IntegerQ[(#1)^(1/3)]&]
Showing 1-6 of 6 results.