cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A385233 Numbers that can be written as s^x + t^y + u^z with 1 < s < t < u and {s,t,u} = {x,y,z} (the sequence of exponents can be any permutation of s,t,u).

Original entry on oeis.org

59, 84, 89, 105, 127, 149, 166, 204, 273, 276, 287, 289, 313, 347, 356, 372, 433, 480, 576, 620, 624, 673, 773, 777, 849, 932, 949, 1065, 1151, 1201, 1230, 1250, 1376, 1380, 1653, 1676, 2033, 2089, 2196, 2244, 2425, 2534, 2545, 2786, 3142, 3156, 3157, 3225, 3270, 3302, 3385, 3388, 3408, 3445, 3718, 4070, 4148, 4249
Offset: 1

Views

Author

Alberto Zanoni, Jun 28 2025

Keywords

Examples

			a(1) = 2^4 + 3^3 + 4^2 = 16 + 27 + 16 =  59.
a(2) = 2^5 + 3^3 + 5^2 = 32 + 27 + 25 =  84.
a(3) = 2^4 + 3^2 + 4^3 = 16 +  9 + 64 =  89.
a(4) = 2^3 + 3^4 + 4^2 =  8 + 81 + 16 = 105.
		

Crossrefs

Cf. A001597, A385232 (two addends).

A173054 Numbers of the form x^y + y^x, 1 < x < y.

Original entry on oeis.org

17, 32, 57, 100, 145, 177, 320, 368, 593, 945, 1124, 1649, 2169, 2530, 4240, 5392, 7073, 8361, 16580, 18785, 20412, 23401, 32993, 60049, 65792, 69632, 94932, 131361, 178478, 262468, 268705, 397585, 423393, 524649, 533169, 1048976, 1058576
Offset: 1

Views

Author

Keywords

Examples

			17 is in the sequence because 17 = 2^3 + 3^2.
		

Crossrefs

Programs

  • Mathematica
    f[a_,b_]:=a^b+b^a; Take[Union[Flatten[Table[f[a,b],{a,2,50},{b,a+1,50}]]],80]
    nn=10^50; n=1; Union[Reap[While[n++; k=n+1; num=n^k+k^n; num
    				

A385969 Numbers that can be written as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.

Original entry on oeis.org

4, 17, 27, 31, 32, 57, 59, 84, 89, 100, 105, 127, 145, 149, 166, 177, 202, 204, 245, 254, 256, 260, 273, 276, 283, 287, 289, 313, 320, 322, 340, 347, 348, 356, 368, 372, 377, 383, 400, 422, 433, 460, 465, 468, 480, 532, 545, 548, 568, 576, 593, 603, 620, 624, 628, 673, 688, 700
Offset: 1

Views

Author

Alberto Zanoni, Jul 13 2025

Keywords

Comments

The value 1 is excluded because for t = 2 one would obtain 1^x_1 + x_1^1 = 1 + x_1, which for x_1 = 2,3,4,... would give the trivial sequence 3,4,5,6,...

Examples

			a(1) =  4 : 2^2 = 4 (t = 1)
a(2) = 17 : 2^3 + 3^2 = 8 + 9 = 17 (t = 2)
a(3) = 27 : 3^3 = 27 (t = 1)
a(4) = 31 : 2^2 + 3^3 = 4 + 27 = 31 (t = 2)
		

Crossrefs

A386968 Numbers that can be written in exactly four ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.

Original entry on oeis.org

331979, 536134, 602342, 848707, 1007017, 1360430, 1484182, 1767157, 1891086, 2024074, 2036922, 2095031, 2097159, 2231826, 2257754, 2292303, 2293830, 2320578, 2440812, 2503676, 2590739, 2744591, 2852016, 2890344, 2914526, 2944901, 2951290, 3019920, 3020295, 3053910, 3121946, 3157114, 3310022
Offset: 1

Views

Author

Alberto Zanoni, Aug 12 2025

Keywords

Examples

			331979 = 2^15 + 4^5  + 5^6 + 6^7 + 7^4 + 15^2
       = 2^2 + 3^8  + 4^9 + 5^3 + 8^4 + 9^5
       = 2^5  + 3^10 + 4^9 + 5^2 + 9^3 + 10^4
       = 2^6 + 3^10 + 4^9 + 5^5 + 6^2 + 9^4 + 10^3.
536134 = 2^6 + 3^12 + 4^3 + 5^5 + 6^4 + 12^2
       = 2^16 + 3^10 + 4^9 + 5^7 + 6^6 + 7^5  + 9^4
       = 2^16 + 4^8  + 5^5 + 6^7 + 7^6 + 8^4  + 16^2
       = 2^18 + 3^11 + 4^4 + 5^7 + 7^5 + 11^3 + 18^2.
602342 = 2^16 + 3^12 + 4^4 + 5^5 + 12^3 + 16^2
       = 2^8  + 3^12 + 4^3 + 5^5 + 6^6 + 8^2 + 12^4
       = 2^13 + 3^8  + 4^2 + 5^3 + 6^7 + 7^5 + 8^6 + 13^4
       = 2^15 + 3^10 + 4^8 + 5^7 + 6^4 + 7^2 + 8^6 + 10^5 + 15^3.
5260225 is not in the sequence as it can be written in exactly five ways a such. - _David A. Corneth_, Aug 16 2025
		

Crossrefs

Subsequence of A385969.

A385970 a(n) is the minimum number of powers needed to obtain the n-th term of sequence A385969.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 4, 3, 4, 4, 1, 2, 3, 3, 2, 3, 3, 3, 2, 4, 4, 3, 4, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 4, 4, 5, 4, 4, 4, 4, 3, 3, 5, 5, 4, 3, 4, 4, 4, 4, 3, 4, 5, 2, 3, 4, 4, 5, 4, 4, 5, 4, 4, 3, 4, 5, 4, 2, 4, 3, 5, 4, 5
Offset: 1

Views

Author

Alberto Zanoni, Jul 14 2025

Keywords

Comments

The sequence is unbounded (conjectured).

Examples

			a(1) = 1, as  4 = 2^2
a(2) = 2, as 17 = 2^3 + 3^2
a(3) = 1, as 27 = 3^3
a(4) = 2, as 31 = 2^2 + 3^3
a(7) = 3, as 59 = 2^4 + 3^3 + 4^2
		

Crossrefs

A385614 Numbers of the form x^x + y^y, 1 < x < y.

Original entry on oeis.org

31, 260, 283, 3129, 3152, 3381, 46660, 46683, 46912, 49781, 823547, 823570, 823799, 826668, 870199, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420493, 387420516, 387420745, 387423614, 387467145, 388244032, 404197705, 10000000004
Offset: 1

Views

Author

Sean A. Irvine, Jul 04 2025

Keywords

Comments

Terms are all combinations of 1 < x < y ordered by increasing y then increasing x, since the largest of one y is strictly less than the smallest of the next: (y-1)^(y-1) + y^y < 2^2 + (y+1)^(y+1) for y >= 3. - Kevin Ryde, Jul 06 2025

Examples

			31 is in the sequence because 31 = 2^2 + 3^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=2 + if(r>1, y=3 + s-(rKevin Ryde, Jul 06 2025
    
  • Python
    from math import isqrt, comb
    def A385614(n):
        y = (m:=isqrt(k:=n<<1))+(k>m*(m+1))+2
        x = n-comb(y-2,2)+1
        return x**x+y**y # Chai Wah Wu, Jul 07 2025

Formula

a(n) = x^x + y^y where x=A131818(n+1) and y=A133196(n). - Kevin Ryde, Jul 06 2025

A386966 Numbers that can be written in exactly two different ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.

Original entry on oeis.org

545, 1407, 1492, 2409, 3370, 3605, 3718, 4516, 4523, 4684, 5441, 6348, 7346, 7737, 7865, 7922, 8122, 8538, 9046, 10010, 10037, 10298, 10458, 10554, 10651, 10891, 10953, 11047, 11653, 11853, 11986, 12025, 12449, 13621, 14078, 14098, 14535, 14970, 16138, 16449, 16705, 16905, 17401, 18149, 18161, 18509
Offset: 1

Views

Author

Alberto Zanoni, Aug 12 2025

Keywords

Examples

			 545 = 2^6  + 3^2 + 4^4 + 6^3  = 2^7 + 3^5 + 5^3 + 7^2.
1407 = 2^10 + 3^3 + 4^4 + 10^2 = 2^7 + 3^4 + 4^5 + 5^3 + 7^2.
1492 = 2^10 + 3^5 + 5^3 + 10^2 = 2^7 + 3^6 + 4^4 + 6^2 + 7^3.
		

Crossrefs

Subsequence of A385969.

A386967 Numbers that can be written in exactly three different ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.

Original entry on oeis.org

23506, 23778, 41682, 50261, 53554, 76754, 78289, 92030, 96981, 99913, 101559, 105885, 109094, 114097, 117538, 125943, 132867, 133116, 135697, 143154, 150041, 158539, 160161, 197547, 198333, 204359, 225138, 225530, 265685, 269986, 277243, 280063, 286299, 291016, 295391, 306251, 312341, 313323
Offset: 1

Views

Author

Alberto Zanoni, Aug 12 2025

Keywords

Examples

			23506 = 2^9 + 4^7 + 7^2 + 9^4
      = 2^3 + 3^4 + 4^2 + 5^6 + 6^5
      = 2^4 + 3^8 + 4^5 + 5^6 + 6^3 + 8^2.
23778 = 2^11 + 3^8 + 4^2 + 8^3 + 11^4
      = 2^12 + 3^2 + 4^5 + 5^6 + 6^4 + 12^3
      = 2^10 + 3^8 + 4^6 + 5^3 + 6^5 + 8^4 + 10^2.
41682 = 2^3 + 3^9 + 4^7 + 5^5 + 7^4 + 9^2
      = 2^9 + 3^8 + 4^7 + 5^4 + 7^5 + 8^2 + 9^3
      = 2^14 + 3^8 + 4^6 + 5^2 + 6^5 + 8^4 + 14^3.
		

Crossrefs

Subsequence of A385969.

A385611 Numbers that can be written as s^w + t^x + u^y + v^z with 1 < s < t < u and {s,t,u,v} = {w,x,y,z} (the sequence of exponents can be any permutation of s,t,u,v).

Original entry on oeis.org

202, 245, 254, 322, 340, 348, 377, 383, 400, 422, 460, 465, 468, 532, 545, 548, 568, 603, 628, 688, 700, 730, 736, 738, 739, 845, 865, 876, 892, 922, 936, 961, 977, 1002, 1029, 1033, 1036, 1092, 1122, 1138, 1174, 1205, 1234, 1236, 1265, 1269, 1338, 1403, 1407, 1433
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 04 2025

Keywords

Examples

			202 = 2^5 + 3^4 + 4^3 + 5^2.
628 = 2^2 + 3^5 + 4^4 + 5^3.
936 = 2^2 + 3^5 + 4^3 + 5^4.
1234 = 2^2 + 3^4 + 4^5 + 5^3.
		

Crossrefs

Showing 1-9 of 9 results.