cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ian Hahus

Ian Hahus's wiki page.

Ian Hahus has authored 3 sequences.

A386972 Numbers that are the product of a semiprime and the square of another semiprime.

Original entry on oeis.org

96, 144, 160, 224, 240, 324, 336, 352, 360, 400, 416, 486, 504, 528, 540, 544, 560, 600, 608, 624, 736, 756, 784, 792, 810, 816, 880, 900, 912, 928, 936, 992, 1040, 1104, 1134, 1176, 1184, 1188, 1215, 1224, 1232, 1260, 1312, 1350, 1360, 1368, 1376, 1392, 1400, 1404, 1456, 1488, 1500
Offset: 1

Author

Ian Hahus, Aug 11 2025

Keywords

Comments

Numbers with prime signature [5, 1], [4, 2], [4, 1, 1], [3, 2, 1], [2, 2, 2] or [2, 2, 1, 1]. So, necessarily but not sufficiently, terms t have bigomega(t) = 6. - David A. Corneth, Aug 11 2025

Examples

			96 = 6 * 4^2;
144 = 9 * 4^2 or 4 * 6^2.
		

Crossrefs

Cf. A001358 (semiprimes), A046306, A054753, A386977.

Programs

  • Maple
    M:= 2000: # for terms <= M
    P:= select(isprime, [2,seq(i,i=3..M/8,2)]): nP:= nops(P):
    S:= {}:
    for i1 from 1 to nP do
      p1:= P[i1];
      if p1^2*4^2 > M then break fi;
      for i2 from i1 to nP do
        p2:= P[i2];
        if p1*p2*4^2 > M then break fi;
        for i3 from 1 to nP do
          p3:= P[i3];
          if p1*p2*p3^4 > M then break fi;
          for i4 from i3 to nP do
            p4:= P[i4];
            v:= p1*p2*(p3*p4)^2;
            if v > M then break fi;
            if p1*p2 = p3*p4 then next fi;
            S:= S union {v}
    od od od od:
    sort(convert(S,list)); # Robert Israel, Aug 11 2025
  • Mathematica
    Select[Range@ 1500, MemberQ[{{1,5}, {2,4}, {1,1,4}, {1,2,3}, {2,2,2}, {1,1,2,2}}, Sort[ Last /@ FactorInteger[#]]] &] (* Giovanni Resta, Aug 12 2025 *)
  • PARI
    is(n) = {my(f = factor(n), b = bigomega(f)); if(b != 6, return(0)); f = vecsort(f[,2]~); #setminus(Set([f]), Set([[1, 5], [2, 4], [1, 1, 4], [1, 2, 3], [2, 2, 2], [1, 1, 2, 2]])) == 0} \\ David A. Corneth, Aug 12 2025

A386977 Products of 3 distinct semiprimes.

Original entry on oeis.org

216, 240, 336, 360, 504, 528, 540, 560, 600, 624, 756, 792, 810, 816, 840, 880, 900, 912, 936, 1000, 1040, 1104, 1134, 1176, 1188, 1224, 1232, 1260, 1320, 1350, 1360, 1368, 1392, 1400, 1404, 1456, 1488, 1500, 1520, 1560, 1656, 1764, 1776, 1782, 1836, 1840, 1848
Offset: 1

Author

Ian Hahus, Aug 11 2025

Keywords

Examples

			216 = 4 * 6 * 9.
		

Crossrefs

Cf. A001222, A001358 (semiprimes), A007304 (sphenic numbers).
Subsequence of A046306.

Programs

  • Maple
    q:= n-> (l-> l=[3$2] or nops(l)>2 and add(i, i=l)=6)(ifactors(n)[2][..., 2]):
    select(q, [$1..2000])[];  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    Select[Range@ 2000, MemberQ[{{3,3}, {1,1,4}, {1,2,3}, {2,2,2}, {1,1,1,3}, {1,1,2,2}, {1,1,1,1,2}, {1,1,1,1,1,1}}, Sort[Last /@ FactorInteger@ #]] &] (* Giovanni Resta, Aug 12 2025 *)

A386892 Numbers k expressible as x^y + y^z + z^x, where x, y, and z are integers > 1.

Original entry on oeis.org

12, 21, 36, 44, 61, 81, 89, 104, 105, 166, 172, 181, 276, 288, 289, 324, 395, 401, 480, 597, 673, 768, 773, 777, 932, 972, 1065, 1128, 1230, 1250, 1376, 1905, 2033, 2089, 2173, 2244, 2545, 2557, 3182, 3388, 3493, 4148, 4244, 4368, 4393, 4652, 4774
Offset: 1

Author

Ian Hahus, Aug 06 2025

Keywords

Examples

			a(7) = 89, which can be given by x=4, y=3, z=2.
		

Crossrefs

Cf. A123207 (subsequence of primes).
Cf. A076980.

Programs

  • PARI
    upto(lim) = { my(L=List()); for(x=2, logint(lim,2), for(y=2, min(x,logint(lim,x)), for(z=2, min(x,logint(lim,y)), my(t=x^y+y^z+z^x); if(t<=lim, listput(L,t)) ))); Set(L) } \\ Andrew Howroyd, Aug 06 2025