cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A123207 Primes of the form x^y + y^z + z^x, for x,y,z > 1.

Original entry on oeis.org

61, 89, 181, 401, 673, 773, 2089, 2557, 12497, 33049, 78857, 98057, 98929, 135329, 268921, 338323, 390721, 531989, 552241, 554233, 794881, 1954097, 2165089, 4204961, 5967161, 8389141, 9765757, 11423429, 17200609, 33555061, 35835953, 40356523, 48829699, 87863309, 268457417
Offset: 1

Views

Author

Alexander Adamchuk, Oct 04 2006

Keywords

Examples

			61 = 5^2 + 2^2 + 2^5.
89 = 4^3 + 3^2 + 2^4.
		

Crossrefs

Cf. A094133 (primes of form x^y + y^x), A386892.

Programs

  • Mathematica
    Take[Select[Intersection[Flatten[Table[x^y+y^z+z^x,{x,2,60},{y,2,60},{z,2,60}]]],PrimeQ[ # ]&],40]
  • PARI
    upto(lim) = { my(L=List()); for(x=2, logint(lim,2), for(y=2, min(x,logint(lim,x)), for(z=2, min(x-1,logint(lim,y)), my(t=x^y+y^z+z^x); if(t<=lim && isprime(t), listput(L,t)) ))); Set(L) } \\ Andrew Howroyd, Aug 06 2025

Extensions

a(32)-a(35) from Michael S. Branicky, Jul 11 2025
Showing 1-1 of 1 results.