A077011 Triangle read by rows: T(n,k) = A002110(n)/prime(n+1-k), k = 1..n.
1, 2, 3, 6, 10, 15, 30, 42, 70, 105, 210, 330, 462, 770, 1155, 2310, 2730, 4290, 6006, 10010, 15015, 30030, 39270, 46410, 72930, 102102, 170170, 255255, 510510, 570570, 746130, 881790, 1385670, 1939938, 3233230, 4849845, 9699690, 11741730
Offset: 1
Examples
Triangle begins: 1; 2, 3; 6, 10, 15; 30, 42, 70, 105; 210, 330, 462, 770, 1155; 2310, 2730, 4290, 6006, 10010, 15015; 30030, 39270, 46410, 72930, 102102, 170170, 255255; ...
Links
- Alois P. Heinz, Rows n = 1..130, flattened
Programs
-
Maple
T:= proc(n) local t; t:= mul(ithprime(i), i=1..n); seq(t/ithprime(n-i), i=0..n-1) end: seq(T(n), n=1..10); # Alois P. Heinz, Jun 04 2012
-
Mathematica
T[n_] := Module[{t = Product[Prime[i], {i, 1, n}]}, Table[t/Prime[n - i], {i, 0, n - 1}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 19 2016, translated from Maple *)
-
PARI
T(n,k) = vecprod(primes(n))/prime(n+1-k); \\ Michel Marcus, May 19 2024
Formula
A089633(n-1) = Sum_{p | n} 2^(pi(p) - 1) for n > 1, pi(x) = A000720(x). - Michael De Vlieger, May 19 2024
Extensions
More terms from Sascha Kurz, Jan 26 2003
Name changed by David James Sycamore, May 19 2024
Comments