A077077 Trajectory of 775 under the Reverse and Add! operation carried out in base 2, written in base 10.
775, 1674, 2325, 5022, 8919, 23976, 26757, 47376, 49581, 96048, 102669, 193056, 197469, 388704, 401949, 779328, 788157, 1563840, 1590333, 3131520, 3149181, 6273408, 6326397, 12554496, 12589821, 25129728, 25235709, 50274816, 50345469
Offset: 0
Examples
775 (decimal) = 1100000111 -> 1100000111 + 1110000011 = 11010001010 = 1674 (decimal).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2
- Index entries for sequences related to Reverse and Add!
Crossrefs
Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).
Programs
-
Haskell
a077077 n = a077077_list !! n a077077_list = iterate a055944 775 -- Reinhard Zumkeller, Apr 21 2013
-
Magma
trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:= Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(775, 28, 2);
-
Mathematica
NestWhileList[# + IntegerReverse[#, 2] &, 775, # != IntegerReverse[#, 2] &, 1, 28] (* Robert Price, Oct 18 2019 *)
-
PARI
trajectory(n,steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))}; trajectory(775,28);
Formula
a(0), ..., a(5) as above; for n > 5 and
n = 2 (mod 4): a(n) = 3*2^(2*k+7)+273*2^k-3 where k = (n+6)/4;
n = 3 (mod 4): a(n) = 6*2^(2*k+7)-222*2^k where k = (n+5)/4;
n = 0 (mod 4): a(n) = 6*2^(2*k+7)+54*2^k-3 where k = (n+4)/4;
n = 1 (mod 4): a(n) = 12*2^(2*k+7)-282*2^k where k = (n+3)/4.
a(n) = -a(n-1)+2*a(n-2)+2*a(n-3)+2*a(n-4)+2*a(n-5)-4*a(n-6)-4*a(n-7)-3 for n > 12; a(0), ..., a(12) as above.
G.f.: (775+1674*x+1944*x^4+8910*x^5+4650*x^6-14508*x^7-19840*x^8-22644*x^9- 1860*x^10+28680*x^11+14328*x^12-2112*x^13) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
G.f. for the sequence starting at a(6): 3*(8919+15792*x-10230*x^2- 15360*x^3-15358*x^4-31696*x^5+16668*x^6+31264*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013
Extensions
Comment edited, three comments and formula added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 14 2010
Comments