cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077079 Number of inequivalent bracelets from A006840 with the additional equivalence condition that subsets of 1-beads whose position vectors add to zero can be removed. Different values of vector sums of (-1)^(k/n) with k taking n values in 1..2n up to rotation and reflection.

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 53, 130, 199, 784, 2135, 2649, 15695, 43085, 32764
Offset: 1

Views

Author

Wouter Meeussen, Oct 27 2002

Keywords

Comments

At n=15 the sequence decreases because of the large number of divisors of 30.

Crossrefs

Identical to A077078 up to n=9. Cf. A006840.

Programs

  • Mathematica
    lowest[li_] := First[Sort[Join[NestList[RotateRight, li, 2n-1], NestList[RotateRight, 1-li, 2n-1], NestList[RotateRight, Reverse@li, 2n-1], NestList[RotateRight, 1-Reverse@li, 2n-1]]]]; ker[n_, k_] := Flatten[Table[Join[{1}, 0Range[ -1+2n/k]], {k}]]; ingekort[li_] := Module[{temp, divi}, len=Length[li]; temp=li-(liRotateRight[li, len/2]); divi=First/@FactorInteger[len]; Table[d=divi[[s]]; k=ker[len/2, d]; temp=Fold[kort[ #1, #2]&, temp, NestList[RotateRight, k, len/d-1]], {s, Length[divi], 2, -1}]; lowest[temp]]; kort[q_, k_] := If[(q.k>=Floor[d/2+1])&&(q.RotateRight[k-kq, len/2]===0), q-kq+RotateRight[k-kq, len/2], q]; Length[inequiv=Union[ingekort/@ListOfBraceletsA006840]]