cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077169 Initial terms of rows of A077168.

Original entry on oeis.org

1, 2, 4, 7, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 158, 176, 195, 215, 236, 258, 281, 305, 330, 356, 383, 411, 440, 470, 501, 533, 566, 600, 635, 671, 708, 746, 785, 825, 866, 908, 951, 995, 1040, 1086, 1133, 1181, 1230, 1280, 1331, 1383
Offset: 0

Views

Author

Amarnath Murthy, Nov 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1, 2, 4, 7}, Table[(n^2 - n + 10)/2, {n, 4, 50}]] (* G. C. Greubel, Jul 13 2017 *)
  • PARI
    concat([1,2,4,7], for(n=4,50, print1((n^2 - n +10)/2, ", "))) \\ G. C. Greubel, Jul 13 2017

Formula

For n>3, a(n) = (n^2-n+10)/2.
From G. C. Greubel, Jul 13 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 7.
G.f.: (1-x+x^2-x^5 + x^6)/(1-x)^3.
E.g.f.: (1/2)*(x^2 + 10)*exp(x) - 4 - 3*x + x^2 - x^3/6. (End)
Sum_{n>=0} 1/a(n) = 1177/840 + 2*Pi*tanh(sqrt(39)*Pi/2)/sqrt(39). - Amiram Eldar, Dec 13 2022

Extensions

More terms from Sascha Kurz, Feb 10 2003

A077170 Final terms of rows of A077168.

Original entry on oeis.org

1, 3, 6, 10, 259200, 87178291200, 202741834014720, 484725313854093312000000, 4438779300500903005519872000000, 346902756482949716983678260882702336000000000
Offset: 0

Views

Author

Amarnath Murthy, Nov 01 2002

Keywords

Crossrefs

Extensions

More terms from Sascha Kurz, Feb 10 2003

A077171 a(n) = k where k! is the product of the terms of the n-th row of A077168.

Original entry on oeis.org

1, 3, 5, 7, 13, 19, 23, 31, 37, 47, 59, 67, 79, 89, 109, 113, 139, 157, 173, 193, 211, 233, 257, 277, 293, 317, 353, 379, 409, 439, 467, 499, 523, 563, 599, 631, 661, 701, 743, 773, 823, 863, 907, 947, 991, 1039, 1069, 1129, 1171, 1229, 1279, 1327, 1381, 1433
Offset: 0

Views

Author

Amarnath Murthy, Nov 01 2002

Keywords

Crossrefs

Extensions

More terms from Sascha Kurz, Feb 10 2003
Deleted an ambiguous comment and an incorrect comment, at the suggestion of Harvey P. Dale. - N. J. A. Sloane, Oct 06 2024
Showing 1-3 of 3 results.