cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077229 Number of compositions of n where the largest part is less than or equal to the number of parts.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 98, 204, 421, 863, 1766, 3606, 7341, 14913, 30233, 61175, 123589, 249344, 502443, 1011366, 2033894, 4086975, 8206833, 16469875, 33035611, 66234372, 132745859, 265961487, 532717894, 1066778687, 2135822457, 4275459730, 8557335141, 17125445575, 34268965676, 68568213419, 137187103849, 274458924246
Offset: 0

Views

Author

Henry Bottomley, Oct 29 2002

Keywords

Examples

			a(5)=11 since 5 can be written as 1+1+1+1+1, 1+1+1+2, 1+1+2+1, 1+1+3, 1+2+1+1, 1+2+2, 1+3+1, 2+1+1+1, 2+1+2, 2+2+1, or 3+1+1; but not as 2+3 since then the largest part (3) would be greater than the number of parts (2).
		

Crossrefs

Row sums of A077227.

Programs

  • Mathematica
    Table[SeriesCoefficient[1 + Sum[x^k*((1-x^k)/(1-x))^k,{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 01 2014 *)

Formula

G.f.: 1 + Sum_{k>=0} ((x^(k+1)-x)/(x-1))^k. - Vladeta Jovovic, Sep 24 2004
G.f.: 1 + Sum_{n>=1} q^n * ( (1-q^n)/(1-q) )^n, the g.f. above, slightly rewritten. [Joerg Arndt, Mar 30 2014]
a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014
a(n) = A098124(n)+A098125(n). - R. J. Mathar, Oct 01 2021

Extensions

More terms from Vladeta Jovovic, Sep 24 2004
Prepended a(0) = 1, Joerg Arndt, Mar 30 2014

A077228 Triangle of compositions with a total that is no more than n into exactly k parts each no more than k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 4, 10, 5, 1, 1, 4, 17, 15, 6, 1, 1, 4, 23, 35, 21, 7, 1, 1, 4, 26, 66, 56, 28, 8, 1, 1, 4, 27, 106, 126, 84, 36, 9, 1, 1, 4, 27, 150, 247, 210, 120, 45, 10, 1, 1, 4, 27, 190, 432, 462, 330, 165, 55, 11, 1, 1, 4, 27, 221, 687, 918, 792, 495, 220, 66
Offset: 0

Views

Author

Henry Bottomley, Oct 30 2002

Keywords

Examples

			Rows start: 1; 1,1; 1,3,1; 1,4,4,1; 1,4,10,5,1; 1,4,17,15,6,1; 1,4,23,35,21,7,1; etc. T(6,3)=17 since compositions with 3 parts each no more than 3 and a total no more than 6 are: 1+1+1, 1+1+2, 1+1+3, 1+2+1, 1+2+2, 1+2+3, 1+3+1, 1+3+2, 2+1+1, 2+1+2, 2+1+3, 2+2+1, 2+2+2, 2+3+1, 3+1+1, 3+1+2 and 3+2+1.
		

Crossrefs

Rows eventually start like A000312. Central diagonal is A001700. Right hand side and central diagonal is like right hand side of A007318. Cf. A077227.

Formula

T(n, k) =a(n-1, k)+A077227(n, k). If n>=k^2, T(n, k)=n^n. If k<=n<2k, T(n, k)=C(n, k).

A221833 Triangle, read by rows, where T(n,k) = [x^n] x^k*(1-x^k)^(k-1) / (1-x)^(k-1) for n>=k>=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 0, 2, 6, 4, 1, 0, 0, 1, 10, 10, 5, 1, 0, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 12, 35, 35, 21, 7, 1, 0, 0, 0, 10, 52, 70, 56, 28, 8, 1, 0, 0, 0, 6, 68, 126, 126, 84, 36, 9, 1, 0, 0, 0, 3, 80, 205, 252, 210, 120, 45, 10, 1
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2013

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 2, 1;
0, 0, 3, 3, 1;
0, 0, 2, 6, 4, 1;
0, 0, 1, 10, 10, 5, 1;
0, 0, 0, 12, 20, 15, 6, 1;
0, 0, 0, 12, 35, 35, 21, 7, 1;
0, 0, 0, 10, 52, 70, 56, 28, 8, 1;
0, 0, 0, 6, 68, 126, 126, 84, 36, 9, 1;
0, 0, 0, 3, 80, 205, 252, 210, 120, 45, 10, 1;
0, 0, 0, 1, 85, 305, 462, 462, 330, 165, 55, 11, 1;
0, 0, 0, 0, 80, 420, 786, 924, 792, 495, 220, 66, 12, 1; ...
in which column sums equal: A000169(k) = k^(k-1) for k>=1.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(((1-x^k)/(1-x +x*O(x^n)))^(k-1),n-k)}
    for(n=1,12,for(k=1,n,print1(T(n,k),", "));print(""))

Formula

G.f. of column k = x^k * ( (1-x^k)/(1-x) )^(k-1).
Showing 1-3 of 3 results.