A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property.
2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329
Offset: 0
Examples
3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Andrej Dujella and László Szalay, Four squares from three numbers, arXiv:2506.14013 [math.NT], 2025. See p. 2.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Programs
-
PARI
Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015
Formula
a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).
G.f.: (2+x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008
E.g.f.: exp(2*x)*(6*cosh(sqrt(3)*x) + 5*sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Oct 19 2023
Comments