cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077237 Combined Diophantine Chebyshev sequences A054491 and A077234.

Original entry on oeis.org

1, 2, 6, 9, 23, 34, 86, 127, 321, 474, 1198, 1769, 4471, 6602, 16686, 24639, 62273, 91954, 232406, 343177, 867351, 1280754, 3236998, 4779839, 12080641, 17838602, 45085566, 66574569, 168261623
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n)= A077238(n).

Examples

			3*a(2)^2 + 13 = 3*36+13 = 121 = 11^2 = A077238(2)^2.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 4 x^2 + x^4), {x, 0, 28}], x] (* Michael De Vlieger, Feb 11 2017 *)

Formula

a(2*k)= A054491(k) and a(2*k+1)= A077234(k), k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2) - a(n-4). - Matthew House, Feb 11 2017

A054491 a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 23, 86, 321, 1198, 4471, 16686, 62273, 232406, 867351, 3236998, 12080641, 45085566, 168261623, 627960926, 2343582081, 8746367398, 32641887511, 121821182646, 454642843073, 1696750189646, 6332357915511, 23632681472398
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077234 with Diophantine companion A077235.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify(ChebyshevU(n,2) +2*ChebyshevU(n-1,2)), n=0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{4,-1},{1,6},30] (* Harvey P. Dale, Sep 04 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ Michel Marcus, Jun 23 2013
    
  • PARI
    a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    [chebyshev_U(n,2) +2*chebyshev_U(n-1,2) for n in (0..30)]; # G. C. Greubel, Jan 15 2020
    

Formula

-3*a(n)^2 + A077236(n)^2 = 13.
a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)).
a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1).
G.f.: (1+2*x)/(1-4*x+x^2).
a(n+1) = A001353(n+2) + 2*A001353(n+1). - Creighton Dement, Nov 28 2004. Comment from Vim Wenders, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - Philippe Deléham, Mar 05 2014
E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Jan 27 2020

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A077236 a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.

Original entry on oeis.org

4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).
Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077235(n) with Diophantine companion A077234(n).

Examples

			11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Crossrefs

Cf. A077238 (even and odd parts), A077235, A053120.

Programs

  • GAP
    a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
    
  • PARI
    a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
G.f.: (4-5*x)/(1-4*x+x^2).
From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
a(n) = second binomial transform of 4,3,12,9,36. (End)
a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - Klaus Purath, Oct 12 2021

Extensions

Edited by N. J. A. Sloane, Sep 07 2018, replacing old definition with simple formula from Philippe Deléham, Nov 16 2008

A077235 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

5, 16, 59, 220, 821, 3064, 11435, 42676, 159269, 594400, 2218331, 8278924, 30897365, 115310536, 430344779, 1606068580, 5993929541, 22369649584, 83484668795, 311569025596, 1162791433589, 4339596708760, 16195595401451, 60442784897044, 225575544186725
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n) = A077234(n).
The even part is A077236(n) with Diophantine companion A054491(n).

Examples

			16 = a(1) = sqrt(3*A077234(1)^2 + 13) = sqrt(3*9^2 + 13)= sqrt(256) = 16.
		

Crossrefs

Cf. A077238 (even and odd parts).

Programs

  • PARI
    Vec((5-4*x)/(1-4*x+x^2) + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*T(n+1, 2)+T(n, 2), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 2)= A001075(n).
G.f.: (5-4*x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=5 and a(1)=16. - Philippe Deléham, Nov 16 2008
Showing 1-4 of 4 results.