cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A077238 Combined Diophantine Chebyshev sequences A077236 and A077235.

Original entry on oeis.org

4, 5, 11, 16, 40, 59, 149, 220, 556, 821, 2075, 3064, 7744, 11435, 28901, 42676, 107860, 159269, 402539, 594400, 1502296, 2218331, 5606645, 8278924, 20924284, 30897365, 78090491, 115310536, 291437680, 430344779, 1087660229, 1606068580, 4059203236, 5993929541
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A077237(n).
Positive values of x (or y) satisfying x^2 - 4xy + y^2 + 39 = 0. - Colin Barker, Feb 06 2014
Positive values of x (or y) satisfying x^2 - 14xy + y^2 + 624 = 0. - Colin Barker, Feb 16 2014

Examples

			11 = a(2) = sqrt(3*A077237(2)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) (4 + 9 x + 4 x^2)/(1 - 4 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 07 2014 *)
    LinearRecurrence[{0,4,0,-1},{4,5,11,16},40] (* Harvey P. Dale, Oct 23 2015 *)

Formula

a(2*k)= A077236(k) and a(2*k+1)= A077235(k), k>=0.
G.f.: (1-x)*(4+9*x+4*x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2)-a(n-4). - Colin Barker, Feb 06 2014

Extensions

More terms from Colin Barker, Feb 06 2014

A054491 a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 23, 86, 321, 1198, 4471, 16686, 62273, 232406, 867351, 3236998, 12080641, 45085566, 168261623, 627960926, 2343582081, 8746367398, 32641887511, 121821182646, 454642843073, 1696750189646, 6332357915511, 23632681472398
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077234 with Diophantine companion A077235.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify(ChebyshevU(n,2) +2*ChebyshevU(n-1,2)), n=0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{4,-1},{1,6},30] (* Harvey P. Dale, Sep 04 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ Michel Marcus, Jun 23 2013
    
  • PARI
    a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    [chebyshev_U(n,2) +2*chebyshev_U(n-1,2) for n in (0..30)]; # G. C. Greubel, Jan 15 2020
    

Formula

-3*a(n)^2 + A077236(n)^2 = 13.
a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)).
a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1).
G.f.: (1+2*x)/(1-4*x+x^2).
a(n+1) = A001353(n+2) + 2*A001353(n+1). - Creighton Dement, Nov 28 2004. Comment from Vim Wenders, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - Philippe Deléham, Mar 05 2014
E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Jan 27 2020

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A162766 a(n) = 3*a(n-2) for n > 2; a(1) = 4, a(2) = 3.

Original entry on oeis.org

4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Binomial transform is A162559. Second binomial transform is A077236.

Crossrefs

Programs

  • Magma
    [ n le 2 select 5-n else 3*Self(n-2): n in [1..34] ];
    
  • PARI
    a(n)=3^(n\2)*4^(n%2) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (5-3*(-1)^n)*3^(1/4*(2*n-1+(-1)^n))/2.
G.f.: x*(4+3*x)/(1-3*x^2).
a(n) = A074324(n+1) = A166552(n+1) = 3^floor(n/2)*4^(n%2), where n%2 = 0 for n even, 1 for n odd. - M. F. Hasler, Dec 03 2014

Extensions

G.f. corrected by Klaus Brockhaus, Sep 18 2009

A077235 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

5, 16, 59, 220, 821, 3064, 11435, 42676, 159269, 594400, 2218331, 8278924, 30897365, 115310536, 430344779, 1606068580, 5993929541, 22369649584, 83484668795, 311569025596, 1162791433589, 4339596708760, 16195595401451, 60442784897044, 225575544186725
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n) = A077234(n).
The even part is A077236(n) with Diophantine companion A054491(n).

Examples

			16 = a(1) = sqrt(3*A077234(1)^2 + 13) = sqrt(3*9^2 + 13)= sqrt(256) = 16.
		

Crossrefs

Cf. A077238 (even and odd parts).

Programs

  • PARI
    Vec((5-4*x)/(1-4*x+x^2) + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*T(n+1, 2)+T(n, 2), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 2)= A001075(n).
G.f.: (5-4*x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=5 and a(1)=16. - Philippe Deléham, Nov 16 2008

A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n) = A077235(n).
The even part is A054491(n) with Diophantine companion A077236(n).

Examples

			3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.
		

Crossrefs

Cf. A001353, A049310, A054491, A077235, A077236, A077237 (even and odd parts).

Programs

  • PARI
    Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).
G.f.: (2+x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008
E.g.f.: exp(2*x)*(6*cosh(sqrt(3)*x) + 5*sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Oct 19 2023

A162559 a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.

Original entry on oeis.org

4, 7, 22, 58, 160, 436, 1192, 3256, 8896, 24304, 66400, 181408, 495616, 1354048, 3699328, 10106752, 27612160, 75437824, 206099968, 563075584, 1538351104, 4202853376, 11482408960, 31370524672, 85705867264, 234152783872, 639717302272, 1747740172288, 4774914949120
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Binomial transform of A162766. Inverse binomial transform of A077236.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009
  • Maple
    seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # Emeric Deutsch, Jul 16 2009
  • Mathematica
    LinearRecurrence[{2,2},{4,7},30] (* Harvey P. Dale, Sep 21 2018 *)

Formula

a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7.
G.f.: (4-x)/(1-2*x-2*x^2).

Extensions

Edited by Klaus Brockhaus, Paolo P. Lava and Emeric Deutsch, Jul 13 2009
Two different extensions were received. This version was rechecked by N. J. A. Sloane, Jul 19 2009

A162561 a(n) = ((4+sqrt(3))*(5+sqrt(3))^nv+v(4-sqrt(3))*(5-sqrt(3))^n)/2.

Original entry on oeis.org

4, 23, 142, 914, 6016, 40052, 268168, 1800536, 12105664, 81444848, 548123872, 3689452064, 24835795456, 167190009152, 1125512591488, 7576945713536, 51008180122624, 343388995528448, 2311709992586752, 15562542024241664
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Third binomial transform of A077236. Fourth binomial transform of A162559. Fifth binomial transform of A162766.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((4+r)*(5+r)^n+(4-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 14 2009
  • Mathematica
    LinearRecurrence[{10,-22},{4,23},30] (* Harvey P. Dale, Mar 27 2013 *)

Formula

a(n) = 10*a(n-1) - 22*a(n-2) for n > 2; a(0) = 4, a(1) = 23.
G.f.: (4-17*x)/(1-10*x+22*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 14 2009

A164310 a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 4, a(1) = 15.

Original entry on oeis.org

4, 15, 66, 306, 1440, 6804, 32184, 152280, 720576, 3409776, 16135200, 76352544, 361304064, 1709709120, 8090430336, 38284327296, 181163381760, 857274326784, 4056665670144, 19196348060160, 90838094340096, 429850477679616
Offset: 0

Views

Author

Klaus Brockhaus, Aug 12 2009

Keywords

Comments

Binomial transform of A077236. Inverse binomial transform of A083882 without initial 1.

Crossrefs

Programs

  • Magma
    [ n le 2 select 11*n-7 else 6*Self(n-1)-6*Self(n-2): n in [1..22] ];
    
  • Mathematica
    LinearRecurrence[{6,-6}, {4,15}, 50] (* or *) CoefficientList[Series[(4 - 9*x)/(1 - 6*x + 6*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 13 2017 *)
  • PARI
    x='x+O('x^50); Vec((4-9*x)/(1-6*x+6*x^2)) \\ G. C. Greubel, Sep 13 2017

Formula

a(n) = ((4+sqrt(3))*(3+sqrt(3))^n + (4-sqrt(3))*(3-sqrt(3))^n)/2.
G.f.: (4-9*x)/(1-6*x+6*x^2).
E.g.f.: (4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x))*exp(3*x). - G. C. Greubel, Sep 13 2017
Showing 1-8 of 8 results.