cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077238 Combined Diophantine Chebyshev sequences A077236 and A077235.

Original entry on oeis.org

4, 5, 11, 16, 40, 59, 149, 220, 556, 821, 2075, 3064, 7744, 11435, 28901, 42676, 107860, 159269, 402539, 594400, 1502296, 2218331, 5606645, 8278924, 20924284, 30897365, 78090491, 115310536, 291437680, 430344779, 1087660229, 1606068580, 4059203236, 5993929541
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A077237(n).
Positive values of x (or y) satisfying x^2 - 4xy + y^2 + 39 = 0. - Colin Barker, Feb 06 2014
Positive values of x (or y) satisfying x^2 - 14xy + y^2 + 624 = 0. - Colin Barker, Feb 16 2014

Examples

			11 = a(2) = sqrt(3*A077237(2)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) (4 + 9 x + 4 x^2)/(1 - 4 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 07 2014 *)
    LinearRecurrence[{0,4,0,-1},{4,5,11,16},40] (* Harvey P. Dale, Oct 23 2015 *)

Formula

a(2*k)= A077236(k) and a(2*k+1)= A077235(k), k>=0.
G.f.: (1-x)*(4+9*x+4*x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2)-a(n-4). - Colin Barker, Feb 06 2014

Extensions

More terms from Colin Barker, Feb 06 2014

A054491 a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 23, 86, 321, 1198, 4471, 16686, 62273, 232406, 867351, 3236998, 12080641, 45085566, 168261623, 627960926, 2343582081, 8746367398, 32641887511, 121821182646, 454642843073, 1696750189646, 6332357915511, 23632681472398
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077234 with Diophantine companion A077235.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify(ChebyshevU(n,2) +2*ChebyshevU(n-1,2)), n=0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{4,-1},{1,6},30] (* Harvey P. Dale, Sep 04 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ Michel Marcus, Jun 23 2013
    
  • PARI
    a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    [chebyshev_U(n,2) +2*chebyshev_U(n-1,2) for n in (0..30)]; # G. C. Greubel, Jan 15 2020
    

Formula

-3*a(n)^2 + A077236(n)^2 = 13.
a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)).
a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1).
G.f.: (1+2*x)/(1-4*x+x^2).
a(n+1) = A001353(n+2) + 2*A001353(n+1). - Creighton Dement, Nov 28 2004. Comment from Vim Wenders, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - Philippe Deléham, Mar 05 2014
E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Jan 27 2020

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A077236 a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.

Original entry on oeis.org

4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).
Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077235(n) with Diophantine companion A077234(n).

Examples

			11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Crossrefs

Cf. A077238 (even and odd parts), A077235, A053120.

Programs

  • GAP
    a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
    
  • PARI
    a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
G.f.: (4-5*x)/(1-4*x+x^2).
From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
a(n) = second binomial transform of 4,3,12,9,36. (End)
a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - Klaus Purath, Oct 12 2021

Extensions

Edited by N. J. A. Sloane, Sep 07 2018, replacing old definition with simple formula from Philippe Deléham, Nov 16 2008

A298678 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of hexagonal tiles after n iterations.

Original entry on oeis.org

1, 0, 7, 12, 73, 216, 919, 3204, 12409, 45408, 171271, 635580, 2379241, 8865000, 33113527, 123523572, 461111833, 1720661616, 6422058919, 23966525484, 89446140169, 333813840888, 1245817611991, 4649439829860, 17351975261881, 64758394108800, 241681735391047
Offset: 0

Views

Author

Felix Fröhlich, Jan 24 2018

Keywords

Comments

The following substitution rules apply to the tiles:
triangle with 6 markings -> 1 hexagon
triangle with 4 markings -> 1 square, 2 triangles with 4 markings
square -> 1 square, 4 triangles with 6 markings
hexagon -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
For n > 0, a(n) is also the number of triangles with 6 markings after n iterations when starting with the hexagon.
a(n) is also the number of triangles with 6 markings after n iterations when starting with the triangle with 6 markings.
a(n) is also the number of hexagons after n iterations when starting with the triangle with 6 markings.

Crossrefs

Programs

  • PARI
    /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
    substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
    terms(n) = my(v=[0, 0, 0, 1], i=0); while(1, print1(v[4], ", "); i++; if(i==n, break, v=substitute(v)))
    
  • PARI
    Vec((1-2*x)/((1+2*x)*(1-4*x+x^2)) + O(x^40)) \\ Colin Barker, Jan 25 2018

Formula

G.f.: (1-2*x)/((1+2*x)*(1-4*x+x^2)). - Joerg Arndt, Jan 25 2018
13*a(n) = A077235(n) + 8*(-2)^n. - Bruno Berselli, Jan 25 2018
From Colin Barker, Jan 25 2018: (Start)
a(n) = (1/26)*((-1)^n*2^(4+n) + (5-2*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(5+2*sqrt(3))).
a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) for n>2.
(End)

Extensions

More terms from Colin Barker, Jan 25 2018

A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n) = A077235(n).
The even part is A054491(n) with Diophantine companion A077236(n).

Examples

			3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.
		

Crossrefs

Cf. A001353, A049310, A054491, A077235, A077236, A077237 (even and odd parts).

Programs

  • PARI
    Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).
G.f.: (2+x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008
E.g.f.: exp(2*x)*(6*cosh(sqrt(3)*x) + 5*sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Oct 19 2023
Showing 1-5 of 5 results.