cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A077237 Combined Diophantine Chebyshev sequences A054491 and A077234.

Original entry on oeis.org

1, 2, 6, 9, 23, 34, 86, 127, 321, 474, 1198, 1769, 4471, 6602, 16686, 24639, 62273, 91954, 232406, 343177, 867351, 1280754, 3236998, 4779839, 12080641, 17838602, 45085566, 66574569, 168261623
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n)= A077238(n).

Examples

			3*a(2)^2 + 13 = 3*36+13 = 121 = 11^2 = A077238(2)^2.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 4 x^2 + x^4), {x, 0, 28}], x] (* Michael De Vlieger, Feb 11 2017 *)

Formula

a(2*k)= A054491(k) and a(2*k+1)= A077234(k), k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2) - a(n-4). - Matthew House, Feb 11 2017

A077236 a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.

Original entry on oeis.org

4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).
Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077235(n) with Diophantine companion A077234(n).

Examples

			11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Crossrefs

Cf. A077238 (even and odd parts), A077235, A053120.

Programs

  • GAP
    a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
    
  • PARI
    a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
G.f.: (4-5*x)/(1-4*x+x^2).
From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
a(n) = second binomial transform of 4,3,12,9,36. (End)
a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - Klaus Purath, Oct 12 2021

Extensions

Edited by N. J. A. Sloane, Sep 07 2018, replacing old definition with simple formula from Philippe Deléham, Nov 16 2008

A077235 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

5, 16, 59, 220, 821, 3064, 11435, 42676, 159269, 594400, 2218331, 8278924, 30897365, 115310536, 430344779, 1606068580, 5993929541, 22369649584, 83484668795, 311569025596, 1162791433589, 4339596708760, 16195595401451, 60442784897044, 225575544186725
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n) = A077234(n).
The even part is A077236(n) with Diophantine companion A054491(n).

Examples

			16 = a(1) = sqrt(3*A077234(1)^2 + 13) = sqrt(3*9^2 + 13)= sqrt(256) = 16.
		

Crossrefs

Cf. A077238 (even and odd parts).

Programs

  • PARI
    Vec((5-4*x)/(1-4*x+x^2) + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*T(n+1, 2)+T(n, 2), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 2)= A001075(n).
G.f.: (5-4*x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=5 and a(1)=16. - Philippe Deléham, Nov 16 2008

A153594 a(n) = ((4 + sqrt(3))^n - (4 - sqrt(3))^n)/(2*sqrt(3)).

Original entry on oeis.org

1, 8, 51, 304, 1769, 10200, 58603, 336224, 1927953, 11052712, 63358307, 363181200, 2081791609, 11932977272, 68400527259, 392075513536, 2247397253921, 12882196355400, 73841406542227, 423262699717616, 2426163312691977, 13906891405206808
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Second binomial transform of A054491. Fourth binomial transform of 1 followed by A162766 and of A074324 without initial term 1.
First differences are in A161728.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(3) = 5.73205080756887729....

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A054491, A074324, A161728, A162766.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..21] ]; [ Integers()!S[j]: j in [1..#S] ];  // Klaus Brockhaus, Dec 31 2008
    
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-13*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016
    
  • Mathematica
    Join[{a=1,b=8},Table[c=8*b-13*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    LinearRecurrence[{8,-13},{1,8},40] (* Harvey P. Dale, Aug 16 2012 *)
  • PARI
    a(n)=([0,1; -13,8]^(n-1)*[1;8])[1,1] \\ Charles R Greathouse IV, Sep 04 2016
  • Sage
    [lucas_number1(n,8,13) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1 - 8*x + 13*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: sinh(sqrt(3)*x)*exp(4*x)/sqrt(3). - Ilya Gutkovskiy, Aug 23 2016
a(n) = Sum_{k=0..n-1} A027907(n,2k+1)*3^k. - J. Conrad, Aug 30 2016
a(n) = Sum_{k=0..n-1} A083882(n-1-k)*4^k. - J. Conrad, Sep 03 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009

A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n) = A077235(n).
The even part is A054491(n) with Diophantine companion A077236(n).

Examples

			3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.
		

Crossrefs

Cf. A001353, A049310, A054491, A077235, A077236, A077237 (even and odd parts).

Programs

  • PARI
    Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).
G.f.: (2+x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008
E.g.f.: exp(2*x)*(6*cosh(sqrt(3)*x) + 5*sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Oct 19 2023

A054485 Expansion of (1+3*x)/(1-4*x+x^2).

Original entry on oeis.org

1, 7, 27, 101, 377, 1407, 5251, 19597, 73137, 272951, 1018667, 3801717, 14188201, 52951087, 197616147, 737513501, 2752437857, 10272237927, 38336513851, 143073817477, 533958756057, 1992761206751, 7437086070947, 27755583077037
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A054491.

Programs

  • GAP
    a:=[1,7];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
  • Magma
    I:=[1, 7]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in[1..30]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    seq( simplify(ChebyshevU(n,2) +3*ChebyshevU(n-1,2)), n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    LinearRecurrence[{4,-1},{1,7},40] (* Vincenzo Librandi, Jun 23 2012 *)
    Table[ChebyshevU[n, 2] +3*ChebyshevU[n-1, 2], {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
  • PARI
    Vec((1+3*x)/(1-4*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
    
  • PARI
    vector(31, n, polchebyshev(n-1,1,2) +5*polchebyshev(n-2,2,2) ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [chebyshev_U(n,2) + 3*chebyshev_U(n-1,2) for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = (7*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/2*sqrt(3).
a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(0)=7.
a(n) = ChebyshevU(n,2) + 3*Chebyshev(n-1,2) = ChebyshevT(n,2) + 5*ChebyshevU(n-1,2). - G. C. Greubel, Jan 19 2020

A166552 a(n) = 3*a(n-2) for n > 2; a(1) = 1; a(2) = 4.

Original entry on oeis.org

1, 4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Oct 16 2009

Keywords

Comments

Interleaving of A000244 (powers of 3) and 4*A000244.
a(n) = A074324(n); A074324 has the additional term a(0)=1.
First differences are in A162852.
Second binomial transform is A054491. Fourth binomial transform is A153594.

Crossrefs

Equals A162766 preceded by 1.
Cf. A000244 (powers of 3), A074324, A162852, A054491, A153594.

Programs

  • Magma
    [ n le 2 select 3*n-2 else 3*Self(n-2): n in [1..35] ];
    
  • Mathematica
    LinearRecurrence[{0, 3}, {1, 4}, 50] (* G. C. Greubel, May 17 2016 *)
  • PARI
    a(n)=3^(n\2)*(4/3)^!bittest(n,0) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (7+(-1)^n)*3^(1/4*(2*n-5+(-1)^n))/2.
G.f.: x*(1+4*x)/(1-3*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 3^floor((n-1)/2)*4^(1-n%2). - M. F. Hasler, Dec 03 2014
E.g.f.: (sqrt(3)*sinh(sqrt(3)*x) + 4*cosh(sqrt(3)*x) - 4)/3. - Ilya Gutkovskiy, May 17 2016

A105968 a(n) = 4*a(n-1) - a(n-2) - 2*(-1)^n, a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 13, 50, 185, 692, 2581, 9634, 35953, 134180, 500765, 1868882, 6974761, 26030164, 97145893, 362553410, 1353067745, 5049717572, 18845802541, 70333492594, 262488167833, 979619178740, 3655988547125, 13644335009762, 50921351491921, 190041070957924
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

This sequence is the (type 1A) "jbasejfor" transformation of the sequence (-1, -1, -1, -1, ..) with respect to the floretion given in the program code. Under the same conditions, the jbasejfor transformation of the sequence (1, 1, 1, 1, ...) is A006253 [Number of perfect matchings (or domino tilings) in C_4 X P_n]; the jbasejfor transformation of the sequence (1, -1, 1, -1, ...) is A001075 [Chebyshev's T(n,x) polynomials evaluated at x=2]; the jbasejfor transformation of the sequence (-1, 1, -1, 1, ...) is A001353 [3*a(n)^2 + 1 is a perfect square]. In this sense, the sequences (a(n)), A006253, A001075 and A001353 form a "quartett".
Floretion Algebra Multiplication Program, FAMP Code: 4jbasejforseq[ + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e]. ForType: 1A. 1vesforseq = (-1, -1, -1, -1, ..).

Crossrefs

Programs

  • GAP
    a:=[1,4,13];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,4,13]; [n le 3 select I[n] else 3*Self(n-1) +3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify((4*ChebyshevU(n,2) -5*ChebyshevU(n-1,2) -(-1)^n)/3), n = 0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[(4*ChebyshevU[n, 2] -5*ChebyshevU[n-1, 2] -(-1)^n)/3, {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    nxt[{n_,a_,b_}]:={n+1,b,4b-a-2(-1)^(n+1)}; NestList[nxt,{1,1,4},30][[;;,2]] (* or *) LinearRecurrence[ {3,3,-1},{1,4,13},30] (* Harvey P. Dale, Apr 03 2024 *)
  • PARI
    Vec((1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, May 25 2015
    
  • SageMath
    [(4*chebyshev_U(n,2) -5*chebyshev_U(n-1,2) -(-1)^n)/3 for n in (0..30)] # G. C. Greubel, Jan 15 2020
    

Formula

G.f.: (1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)).
a(n) + a(n+1) = A054491(n+1) - A054491(n).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3). - Colin Barker, May 25 2015
a(n) = ( 4*ChebyshevU(n,2) - 5*ChebyshevU(n-1,2) - (-1)^n )/3. - G. C. Greubel, Jan 15 2020
E.g.f.: (exp(2*x)*(4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - cosh(x) + sinh(x))/3. - Stefano Spezia, Sep 19 2023

A055269 a(n) = 4*a(n-1) - a(n-2) + 3 with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 30, 116, 437, 1635, 6106, 22792, 85065, 317471, 1184822, 4421820, 16502461, 61588027, 229849650, 857810576, 3201392657, 11947760055, 44589647566, 166410830212, 621053673285, 2317803862931, 8650161778442, 32282843250840, 120481211224921, 449642001648847
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

Also partial sums of A054491.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • Magma
    I:=[1,7,30]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 16 2020
    
  • Maple
    A055269:= n-> simplify((5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2); seq( A055269(n), n=0..40); # G. C. Greubel, Mar 16 2020
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,7,30},40] (* or *) CoefficientList[ Series[ (1+2*x)/(1-5*x+5*x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
    Table[(5*ChebyshevU[n, 2] -3*ChebyshevU[n-1, 2] - 3)/2, {n,0,40}] (* G. C. Greubel, Mar 16 2020 *)
  • Sage
    [(5*chebyshev_U(n, 2) - 3*chebyshev_U(n-1, 2) - 3)/2 for n in (0..40)] # G. C. Greubel, Mar 16 2020

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x+x^2)).
a(n) = ( ( (17 - 5*(2-sqrt(3)))*(2+sqrt(3))^n + (5*(2+sqrt(3))-17)*(2-sqrt(3))^n )/(4*sqrt(3)) ) - 3/2.
a(n) = (5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2. - G. C. Greubel, Mar 16 2020

Extensions

Corrected by T. D. Noe, Nov 07 2006

A109731 a(n) = - 4*a(n-2) - a(n-4), a(0) = 1, a(1) = -4, a(2) = -6, a(3) = 15.

Original entry on oeis.org

1, -4, -6, 15, 23, -56, -86, 209, 321, -780, -1198, 2911, 4471, -10864, -16686, 40545, 62273, -151316, -232406, 564719, 867351, -2107560, -3236998, 7865521, 12080641, -29354524, -45085566, 109552575, 168261623, -408855776
Offset: 0

Views

Author

Creighton Dement, Aug 09 2005

Keywords

Comments

Sequence A002530 and A002531 are also generated by the floretion given in the program code.

Crossrefs

Programs

  • Maple
    Floretion Algebra Multiplication Program, FAMP Code: 1lestesseq[A*B] with A = + .25'i + .25i' + 'ij' + .25'jk' + .25'kj' and B = + j' + k' + 'ii'.
  • Mathematica
    LinearRecurrence[{0,-4,0,-1},{1,-4,-6,15},40] (* Harvey P. Dale, Mar 05 2013 *)

Formula

a(2n) = ((-1)^n)*A054491(n), a(2n+1) = ((-1)^n+1)*A001353(n+1). G.f. (1-4*x-2*x^2-x^3)/(x^4+4*x^2+1)
Showing 1-10 of 10 results.