cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077238 Combined Diophantine Chebyshev sequences A077236 and A077235.

Original entry on oeis.org

4, 5, 11, 16, 40, 59, 149, 220, 556, 821, 2075, 3064, 7744, 11435, 28901, 42676, 107860, 159269, 402539, 594400, 1502296, 2218331, 5606645, 8278924, 20924284, 30897365, 78090491, 115310536, 291437680, 430344779, 1087660229, 1606068580, 4059203236, 5993929541
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A077237(n).
Positive values of x (or y) satisfying x^2 - 4xy + y^2 + 39 = 0. - Colin Barker, Feb 06 2014
Positive values of x (or y) satisfying x^2 - 14xy + y^2 + 624 = 0. - Colin Barker, Feb 16 2014

Examples

			11 = a(2) = sqrt(3*A077237(2)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) (4 + 9 x + 4 x^2)/(1 - 4 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 07 2014 *)
    LinearRecurrence[{0,4,0,-1},{4,5,11,16},40] (* Harvey P. Dale, Oct 23 2015 *)

Formula

a(2*k)= A077236(k) and a(2*k+1)= A077235(k), k>=0.
G.f.: (1-x)*(4+9*x+4*x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2)-a(n-4). - Colin Barker, Feb 06 2014

Extensions

More terms from Colin Barker, Feb 06 2014

A077234 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 9, 34, 127, 474, 1769, 6602, 24639, 91954, 343177, 1280754, 4779839, 17838602, 66574569, 248459674, 927264127, 3460596834, 12915123209, 48199896002, 179884460799, 671337947194, 2505467327977, 9350531364714, 34896658130879, 130236101158802, 486047746504329
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n) = A077235(n).
The even part is A054491(n) with Diophantine companion A077236(n).

Examples

			3*a(1)^2 + 13 = 3*81+13 = 256 = 16^2 = A077235(1)^2.
		

Crossrefs

Cf. A001353, A049310, A054491, A077235, A077236, A077237 (even and odd parts).

Programs

  • PARI
    Vec((2+x)/(1-4*x+x^2) + O(x^50)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = 2*S(n, 4)+S(n-1, 4), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) = 0 and S(n, 4) = A001353(n+1).
G.f.: (2+x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=2 and a(1)=9. - Philippe Deléham, Nov 16 2008
E.g.f.: exp(2*x)*(6*cosh(sqrt(3)*x) + 5*sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Oct 19 2023
Showing 1-2 of 2 results.