cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162766 a(n) = 3*a(n-2) for n > 2; a(1) = 4, a(2) = 3.

Original entry on oeis.org

4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Binomial transform is A162559. Second binomial transform is A077236.

Crossrefs

Programs

  • Magma
    [ n le 2 select 5-n else 3*Self(n-2): n in [1..34] ];
    
  • PARI
    a(n)=3^(n\2)*4^(n%2) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (5-3*(-1)^n)*3^(1/4*(2*n-1+(-1)^n))/2.
G.f.: x*(4+3*x)/(1-3*x^2).
a(n) = A074324(n+1) = A166552(n+1) = 3^floor(n/2)*4^(n%2), where n%2 = 0 for n even, 1 for n odd. - M. F. Hasler, Dec 03 2014

Extensions

G.f. corrected by Klaus Brockhaus, Sep 18 2009

A074324 a(2n+1) = 3^n, a(2n) = 4*3^(n-1) except for a(0) = 1.

Original entry on oeis.org

1, 1, 4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Also: Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(1,3), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=f(n-1)+3f(n-2).
Sequences A162766, A166552 are essentially the same. - M. F. Hasler, Dec 03 2014

Examples

			nu(0)=1;
nu(1)=1;
nu(2)=4;
nu(3)=7+3q;
nu(4)=19+15q+12q^2;
nu(5)=40+45q+42q^2+30q^3+9q^4;
nu(6)=97+147q+180q^2+168q^3+147q^4+81q^5+36q^6;
by listing the coefficients of the highest power in each nu(n), we get, 1,1,4,3,12,9,36,....
		

Crossrefs

Cf. A006130.

Programs

  • Magma
    [1] cat [(1/6)*(7+(-1)^n)*3^Floor(n/2):n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Mathematica
    CoefficientList[Series[-(1 + x + x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    LinearRecurrence[{0,3},{1,1,4},40] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    a(n)=3^(n\2)\(3/4)^!bittest(n,0) \\ M. F. Hasler, Dec 03 2014

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n) = lambda*t(n-2).
G.f.: -(1+x+x^2)/(-1+3*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 3*a(n-2) for n>2. - Ralf Stephan, Jul 19 2013
a(n) = (1/6)*(7+(-1)^n)*3^floor(n/2) for n>0. - Ralf Stephan, Jul 19 2013

Extensions

More terms from R. J. Mathar, Dec 05 2007
Simpler definition from M. F. Hasler, Dec 03 2014
Showing 1-2 of 2 results.