A077242 Combined Diophantine Chebyshev sequences A077240 and A077239.
5, 7, 23, 37, 133, 215, 775, 1253, 4517, 7303, 26327, 42565, 153445, 248087, 894343, 1445957, 5212613, 8427655, 30381335, 49119973, 177075397, 286292183, 1032071047, 1668633125, 6015350885, 9725506567, 35060034263, 56684406277, 204344854693, 330380931095
Offset: 0
Examples
23 = a(2) = sqrt(8*A077241(2)^2 + 17) = sqrt(8*8^2 + 17)= sqrt(529) = 23.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Magma
I:=[5,7,23,37]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
-
Mathematica
A077239 = Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 12}]; A077240 = Table[ChebyshevT[n+1, 3] + 2*ChebyshevT[n, 3], {n, 0, 12}]; Riffle[A077240, A077239] (* Jean-François Alcover, Dec 19 2013 *) CoefficientList[Series[(1 - x) (5 + 12 x + 5 x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
-
PARI
Vec((1-x)*(5+12*x+5*x^2)/(1-6*x^2+x^4) + O(x^50)) \\ Colin Barker, Mar 27 2016
Formula
G.f.: (1-x)*(5+12*x+5*x^2)/(1-6*x^2+x^4).
a(n) = 6*a(n-2)-a(n-4) for n>3. - Vincenzo Librandi, Feb 18 2014
a(n) = ((6-5*sqrt(2))*(1-sqrt(2))^n - (-1-sqrt(2))^n*(-4+sqrt(2)) + 4*(-1+sqrt(2))^n + sqrt(2)*(-1+sqrt(2))^n + 6*(1+sqrt(2))^n + 5*sqrt(2)*(1+sqrt(2))^n)/4. - Colin Barker, Mar 27 2016
Comments