cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077242 Combined Diophantine Chebyshev sequences A077240 and A077239.

Original entry on oeis.org

5, 7, 23, 37, 133, 215, 775, 1253, 4517, 7303, 26327, 42565, 153445, 248087, 894343, 1445957, 5212613, 8427655, 30381335, 49119973, 177075397, 286292183, 1032071047, 1668633125, 6015350885, 9725506567, 35060034263, 56684406277, 204344854693, 330380931095
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077241(n).
Because there is only one primitive Pythagorean triangle with sum of the legs L = 17 (see also A120681), namely (5,12,13), all positive solutions (x(n), y(n)) = (a(n), 2*A077241(n)) of the (generalized) Pell equation x^2 - 2*y^2 = +17 satisfy x(n) < 2*y(n), for n >= 1, only 5 = x(0) > 2*y(0) = 4. The proof runs along the same line as the one given in a comment on the L=7 case in A077443. - Wolfdieter Lang, Feb 05 2015

Examples

			23 = a(2) = sqrt(8*A077241(2)^2 + 17) = sqrt(8*8^2 + 17)= sqrt(529) = 23.
		

Programs

  • Magma
    I:=[5,7,23,37]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
    
  • Mathematica
    A077239 = Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 12}]; A077240 = Table[ChebyshevT[n+1, 3] + 2*ChebyshevT[n, 3], {n, 0, 12}]; Riffle[A077240, A077239] (* Jean-François Alcover, Dec 19 2013 *)
    CoefficientList[Series[(1 - x) (5 + 12 x + 5 x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
  • PARI
    Vec((1-x)*(5+12*x+5*x^2)/(1-6*x^2+x^4) + O(x^50)) \\ Colin Barker, Mar 27 2016

Formula

a(2*k) = A077240(k) and a(2*k+1) = A077239(k), k>=0.
G.f.: (1-x)*(5+12*x+5*x^2)/(1-6*x^2+x^4).
a(n) = 6*a(n-2)-a(n-4) for n>3. - Vincenzo Librandi, Feb 18 2014
a(n) = ((6-5*sqrt(2))*(1-sqrt(2))^n - (-1-sqrt(2))^n*(-4+sqrt(2)) + 4*(-1+sqrt(2))^n + sqrt(2)*(-1+sqrt(2))^n + 6*(1+sqrt(2))^n + 5*sqrt(2)*(1+sqrt(2))^n)/4. - Colin Barker, Mar 27 2016