A077241 Combined Diophantine Chebyshev sequences A054488 and A077413.
1, 2, 8, 13, 47, 76, 274, 443, 1597, 2582, 9308, 15049, 54251, 87712, 316198, 511223, 1842937, 2979626, 10741424, 17366533, 62605607, 101219572, 364892218, 589950899, 2126747701, 3438485822, 12395593988, 20040964033, 72246816227, 116807298376
Offset: 0
Examples
8*a(2)^2 + 17 = 8*8^2+17 = 529 = 23^2 = A077242(2)^2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Magma
I:=[1,2,8,13]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
-
Mathematica
LinearRecurrence[{0, 6, 0, -1}, {1, 2, 8, 13}, 30] (* Bruno Berselli, Mar 10 2013 *) CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
-
Maxima
makelist(expand((-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8), n, 0, 30); /* Bruno Berselli, Mar 10 2013 */
Formula
G.f.: (1+x)*(1+x+x^2)/(1-6*x^2+x^4).
a(n) = (-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8. [Bruno Berselli, Mar 10 2013]
Comments