A144941
Numbers k such that 6*k-1 = A144796(k).
Original entry on oeis.org
1, 36, 753, 41348, 868769, 47715364, 1002558481, 55063488516, 1156951618113, 63543218031908, 1335121164743729, 73328818545333124, 1540728667162644961, 84621393058096392996, 1777999546784527541073, 97653014260224692184068
Offset: 1
a(1) = 1 because 6*1 - 1 = 5 = A144796(1).
-
a:=[1,36,753,41348,868769];; for n in [6..30] do a[n]:=a[n-1] +1154*a[n-2]-1154*a[n-3]-a[n-4]+a[n-5]; od; a; # G. C. Greubel, Mar 16 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+ 35*x-437*x^2+205*x^3+4*x^4)/((1-x)*(1-34*x+x^2)*(1+34*x+x^2)) )); // G. C. Greubel, Mar 16 2019
-
LinearRecurrence[{1,1154,-1154,-1,1},{1,36,753,41348,868769},30] (* Harvey P. Dale, Dec 27 2018 *)
-
Vec(-x*(1+35*x-437*x^2+205*x^3+4*x^4) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^30)) \\ Colin Barker, Dec 22 2014
-
a=(x*(1+ 35*x-437*x^2+205*x^3+4*x^4)/((1-x)*(1-34*x+x^2)*(1+34*x +x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
a(6) corrected and sequence extended by
R. J. Mathar, Nov 27 2011
A133301
a(n) is the n-th pentagonal number which is the sum of two consecutive pentagonal numbers.
Original entry on oeis.org
1, 1926, 850137, 2564464982, 1132138928657, 3415133918621062, 1507685261236261801, 4547981651299964079126, 2007805569980855008712097, 6056610836775865229750164742, 2673822786819976661810784866297, 8065673443881586606920210924732502
Offset: 1
With P(m) = m*(3*m-1)/2,
a(1)=1 because a(1) = P(1) = P(0) + P(1);
a(2)=1926 because P(36) = 1926 = P(25) + P(26) = 925 + 1001;
a(3)=850137 because P(753) = 850137 = P(532) + P(533) = 424270 + 425867 ...
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)) )); // G. C. Greubel, Mar 16 2019
-
a:=proc(m) if type (sqrt(18*m^2-6*m-8)/6-1/3), integer=true then m*(3*m-1)/2 else fi end : seq(a(m),m=1..100000)od; # Emeric Deutsch
-
# (3 # - 1)/2 &@ Select[Range[10^6], IntegerQ[Sqrt[18 #^2 - 6 # - 8]/6 - 1/3] &] (* or *)
Rest@ CoefficientList[Series[x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/( (1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)), {x, 0, 12}], x] (* Michael De Vlieger, Jul 14 2016 *)
-
Vec(x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 20 2014
-
a=(x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2))).series(x, 20).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
Fixed typo in g.f. in formula, and more terms from
Colin Barker, Oct 20 2014
A144942
Expansion of x^2*(3*x^3+145*x^2-507*x-25) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
Original entry on oeis.org
0, 25, 532, 29237, 614312, 33739857, 708915900, 38935766125, 818088334672, 44931840368777, 944073229295972, 51851304849802917, 1089459688519217400, 59836360864832197825, 1257235536477947584012, 69051108586711506487517, 1450848719635862992732832
Offset: 1
-
CoefficientList[Series[x (3 x^3 + 145 x^2 - 507 x - 25)/((x - 1) (x^2 - 34 x + 1) (x^2 + 34 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 20 2014 *)
LinearRecurrence[{1,1154,-1154,-1,1},{0,25,532,29237,614312},20] (* Harvey P. Dale, Jun 16 2025 *)
-
concat(0, Vec(x^2*(3*x^3+145*x^2-507*x-25)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^20))) \\ Colin Barker, Oct 20 2014
a(6) corrected, and more terms from
Colin Barker, Oct 20 2014
Showing 1-3 of 3 results.
Comments