cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A257714 Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.

Original entry on oeis.org

44290, 487065, 97731740, 1074935965, 476036316661270, 5235848584389645, 1050611935177517000, 11555515453364758825, 5117369992623387417086890, 56285147779473003009380865, 11294033255019751129047408500, 124221295646279547914265231925
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			44290 is in the sequence because P(172) = 44290 = 8400+8626+8855+9087+9322 = P(75)+ ... +P(79).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5 (29 x^8 + 275 x^7 + 60401 x^6 + 606965 x^5 - 16071841615 x^4 + 195440845 x^3 + 19448935 x^2 + 88555 x + 8858)/((1 - x) (x^2 - 322 x + 1) (x^2 + 322 x + 1) (x^4 + 103682 x^2 + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 06 2015 *)
  • PARI
    Vec(-5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)) + O(x^100))

Formula

G.f.: -5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)).

A257715 Pentagonal numbers (A000326) that are the sum of six consecutive pentagonal numbers.

Original entry on oeis.org

651, 354051, 196476315, 1833809355, 1017687528051, 564774036750651, 313425981747606051, 173938318056614696235, 1623451323680702588835, 900947621231988101541051, 499988268427580436128625651, 277472588498948806845840543051, 153985687725108202266731539138755
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			651 is in the sequence because P(21) = 651 = 51+70+92+117+145+176 = P(6)+ ... +P(11).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[3 (17 x^10 + 6808 x^9 + 56840 x^8 + 35265352 x^7 + 19570796200 x^6 - 4188939995034 x^5 + 338617906232 x^4 + 545777680 x^3 + 65374088 x^2 + 117800 x + 217)/((1 - x) (x^10 - 885289046402 x^5 + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 06 2015 *)
    LinearRecurrence[{1,0,0,0,885289046402,-885289046402,0,0,0,-1,1},{651,354051,196476315,1833809355,1017687528051,564774036750651,313425981747606051,173938318056614696235,1623451323680702588835,900947621231988101541051,499988268427580436128625651},20] (* Harvey P. Dale, Dec 14 2015 *)
  • PARI
    Vec(-3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)) + O(x^100))

Formula

G.f.: -3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)).

A259402 Pentagonal numbers (A000326) that are the sum of seven consecutive pentagonal numbers.

Original entry on oeis.org

287, 532, 17145051, 32963672, 1106094475927, 2126616990876, 71358579001465427, 137196568515066592, 4603627364594444737551, 8851099419054387781412, 296998415728087428795555787, 571019827783678204813603176, 19160555787678205016722039960967
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			287 is in the sequence because P(14) = 287 = 5+12+22+35+51+70+92 = P(2)+ ... +P(8).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,64514,-64514,-1,1},{287,532,17145051,32963672,1106094475927},20] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    Vec(-7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^20))

Formula

G.f.: -7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)).

A259403 Pentagonal numbers (A000326) that are the sum of eleven consecutive pentagonal numbers.

Original entry on oeis.org

2882, 27676, 1114135, 10982301, 443390277, 4370895551, 176468183540, 1739605414426, 70233893626072, 692358584013426, 27952913194960545, 275556976831896551, 11125189217700638267, 109670984420510781301, 4427797355731659037150, 43648776242386459028676
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2882 is in the sequence because P(44) = 2882 = 92 + 117 + 145 + 176 + 210 + 247 + 287 + 330 + 376 + 425 + 477 = P(8)+ ... +P(18).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,398,-398,-1,1},{2882,27676,1114135,10982301,443390277},30] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    Vec(-11*x*(16*x^4+14*x^3-5507*x^2+2254*x+262)/((x-1)*(x^2-20*x+1)*(x^2+20*x+1)) + O(x^20))

Formula

G.f.: -11*x*(16*x^4+14*x^3-5507*x^2+2254*x+262) / ((x-1)*(x^2-20*x+1)*(x^2+20*x+1)).

A259404 Pentagonal numbers (A000326) that are the sum of twelve consecutive pentagonal numbers.

Original entry on oeis.org

417912, 9706632, 3050311681782, 70865417283102, 22269721626195937752, 517374380230514907672, 162586828187971503638961822, 3777247909935632832763236342, 1187014240408376459988712771009992, 27576939095353370682323270116205112
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			417912 is in the sequence because P(528) = 417912 = 32340 + 32782 + 33227 + 33675 + 34126 + 34580 + 35037 + 35497 + 35960 + 36426 + 36895 + 37367 = P(147)+ ... +P(158).
		

Crossrefs

Programs

  • Mathematica
    Select[Total/@Partition[PolygonalNumber[5,Range[5*10^6]],12,1],IntegerQ[ (1+Sqrt[ 1+24#])/6]&] (* The program generates the first four terms of the sequence. To generate more, increase the Range constant but the program will take a long time to run. *) (* Harvey P. Dale, Dec 17 2020 *)
  • PARI
    Vec(-6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1)) + O(x^20))

Formula

G.f.: -6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1))

A144797 Numbers k such that 2*k^2 + 17 is a square.

Original entry on oeis.org

2, 4, 16, 26, 94, 152, 548, 886, 3194, 5164, 18616, 30098, 108502, 175424, 632396, 1022446, 3685874, 5959252, 21482848, 34733066, 125211214, 202439144, 729784436, 1179901798, 4253495402, 6876971644, 24791187976, 40081928066, 144493632454, 233614596752
Offset: 1

Views

Author

Richard Choulet, Sep 21 2008

Keywords

Examples

			a(1)=2 because 2*4 + 17 = 25 = 5^2.
		

Crossrefs

Cf. A133301.

Programs

  • Mathematica
    Select[Range[6000000],IntegerQ[Sqrt[2#^2+17]]&] (* Harvey P. Dale, Aug 18 2012 *)
    LinearRecurrence[{0, 6, 0, -1}, 2{1, 2, 8, 13}, 30] (* Robert G. Wilson v, Dec 02 2014 *)
  • PARI
    Vec(2*x*(1+x)*(1+x+x^2) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Oct 20 2014

Formula

G.f.: 2*x*(1+x)*(1+x+x^2) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Nov 27 2011
a(n) = 2*A077241(n-1). - R. J. Mathar, Nov 27 2011
a(n) = 6*a(n-2) - a(n-4). - Colin Barker, Oct 20 2014

Extensions

Corrected by R. J. Mathar, Nov 27 2011
Editing and more terms from Colin Barker, Oct 20 2014

A144941 Numbers k such that 6*k-1 = A144796(k).

Original entry on oeis.org

1, 36, 753, 41348, 868769, 47715364, 1002558481, 55063488516, 1156951618113, 63543218031908, 1335121164743729, 73328818545333124, 1540728667162644961, 84621393058096392996, 1777999546784527541073, 97653014260224692184068
Offset: 1

Views

Author

Richard Choulet, Sep 26 2008

Keywords

Comments

Also the index of a pentagonal number which is equal to the sum of two consecutive pentagonal numbers. - Colin Barker, Dec 22 2014

Examples

			a(1) = 1 because 6*1 - 1 = 5 = A144796(1).
		

Crossrefs

Programs

  • GAP
    a:=[1,36,753,41348,868769];; for n in [6..30] do a[n]:=a[n-1] +1154*a[n-2]-1154*a[n-3]-a[n-4]+a[n-5]; od; a; # G. C. Greubel, Mar 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+ 35*x-437*x^2+205*x^3+4*x^4)/((1-x)*(1-34*x+x^2)*(1+34*x+x^2)) )); // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    LinearRecurrence[{1,1154,-1154,-1,1},{1,36,753,41348,868769},30] (* Harvey P. Dale, Dec 27 2018 *)
  • PARI
    Vec(-x*(1+35*x-437*x^2+205*x^3+4*x^4) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^30)) \\ Colin Barker, Dec 22 2014
    
  • Sage
    a=(x*(1+ 35*x-437*x^2+205*x^3+4*x^4)/((1-x)*(1-34*x+x^2)*(1+34*x +x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
    

Formula

For the odd and even indices respectively the same recurrence is obtained: a(n+2) = 1154*a(n+1) - a(n) - 192.
We also have a(n+2) = 577*a(n+1) - 96 + 68*sqrt((72*a(n)^2-24*a(n)-32)).
G.f.: x*(1 + 35*x - 437*x^2 + 205*x^3 + 4*x^4) / ((1-x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)). - R. J. Mathar, Nov 27 2011

Extensions

a(6) corrected and sequence extended by R. J. Mathar, Nov 27 2011

A144942 Expansion of x^2*(3*x^3+145*x^2-507*x-25) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).

Original entry on oeis.org

0, 25, 532, 29237, 614312, 33739857, 708915900, 38935766125, 818088334672, 44931840368777, 944073229295972, 51851304849802917, 1089459688519217400, 59836360864832197825, 1257235536477947584012, 69051108586711506487517, 1450848719635862992732832
Offset: 1

Views

Author

Richard Choulet, Sep 26 2008

Keywords

Comments

Also the index of the first of two consecutive pentagonal numbers whose sum is also a pentagonal number. - Colin Barker, Dec 22 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (3 x^3 + 145 x^2 - 507 x - 25)/((x - 1) (x^2 - 34 x + 1) (x^2 + 34 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 20 2014 *)
    LinearRecurrence[{1,1154,-1154,-1,1},{0,25,532,29237,614312},20] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    concat(0, Vec(x^2*(3*x^3+145*x^2-507*x-25)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^20))) \\ Colin Barker, Oct 20 2014

Extensions

a(6) corrected, and more terms from Colin Barker, Oct 20 2014
Edited, name changed by Colin Barker, Oct 20 2014
Showing 1-8 of 8 results.