cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A257714 Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.

Original entry on oeis.org

44290, 487065, 97731740, 1074935965, 476036316661270, 5235848584389645, 1050611935177517000, 11555515453364758825, 5117369992623387417086890, 56285147779473003009380865, 11294033255019751129047408500, 124221295646279547914265231925
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			44290 is in the sequence because P(172) = 44290 = 8400+8626+8855+9087+9322 = P(75)+ ... +P(79).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5 (29 x^8 + 275 x^7 + 60401 x^6 + 606965 x^5 - 16071841615 x^4 + 195440845 x^3 + 19448935 x^2 + 88555 x + 8858)/((1 - x) (x^2 - 322 x + 1) (x^2 + 322 x + 1) (x^4 + 103682 x^2 + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 06 2015 *)
  • PARI
    Vec(-5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)) + O(x^100))

Formula

G.f.: -5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)).

A257715 Pentagonal numbers (A000326) that are the sum of six consecutive pentagonal numbers.

Original entry on oeis.org

651, 354051, 196476315, 1833809355, 1017687528051, 564774036750651, 313425981747606051, 173938318056614696235, 1623451323680702588835, 900947621231988101541051, 499988268427580436128625651, 277472588498948806845840543051, 153985687725108202266731539138755
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			651 is in the sequence because P(21) = 651 = 51+70+92+117+145+176 = P(6)+ ... +P(11).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[3 (17 x^10 + 6808 x^9 + 56840 x^8 + 35265352 x^7 + 19570796200 x^6 - 4188939995034 x^5 + 338617906232 x^4 + 545777680 x^3 + 65374088 x^2 + 117800 x + 217)/((1 - x) (x^10 - 885289046402 x^5 + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 06 2015 *)
    LinearRecurrence[{1,0,0,0,885289046402,-885289046402,0,0,0,-1,1},{651,354051,196476315,1833809355,1017687528051,564774036750651,313425981747606051,173938318056614696235,1623451323680702588835,900947621231988101541051,499988268427580436128625651},20] (* Harvey P. Dale, Dec 14 2015 *)
  • PARI
    Vec(-3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)) + O(x^100))

Formula

G.f.: -3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)).

A259403 Pentagonal numbers (A000326) that are the sum of eleven consecutive pentagonal numbers.

Original entry on oeis.org

2882, 27676, 1114135, 10982301, 443390277, 4370895551, 176468183540, 1739605414426, 70233893626072, 692358584013426, 27952913194960545, 275556976831896551, 11125189217700638267, 109670984420510781301, 4427797355731659037150, 43648776242386459028676
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2882 is in the sequence because P(44) = 2882 = 92 + 117 + 145 + 176 + 210 + 247 + 287 + 330 + 376 + 425 + 477 = P(8)+ ... +P(18).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,398,-398,-1,1},{2882,27676,1114135,10982301,443390277},30] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    Vec(-11*x*(16*x^4+14*x^3-5507*x^2+2254*x+262)/((x-1)*(x^2-20*x+1)*(x^2+20*x+1)) + O(x^20))

Formula

G.f.: -11*x*(16*x^4+14*x^3-5507*x^2+2254*x+262) / ((x-1)*(x^2-20*x+1)*(x^2+20*x+1)).

A259404 Pentagonal numbers (A000326) that are the sum of twelve consecutive pentagonal numbers.

Original entry on oeis.org

417912, 9706632, 3050311681782, 70865417283102, 22269721626195937752, 517374380230514907672, 162586828187971503638961822, 3777247909935632832763236342, 1187014240408376459988712771009992, 27576939095353370682323270116205112
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			417912 is in the sequence because P(528) = 417912 = 32340 + 32782 + 33227 + 33675 + 34126 + 34580 + 35037 + 35497 + 35960 + 36426 + 36895 + 37367 = P(147)+ ... +P(158).
		

Crossrefs

Programs

  • Mathematica
    Select[Total/@Partition[PolygonalNumber[5,Range[5*10^6]],12,1],IntegerQ[ (1+Sqrt[ 1+24#])/6]&] (* The program generates the first four terms of the sequence. To generate more, increase the Range constant but the program will take a long time to run. *) (* Harvey P. Dale, Dec 17 2020 *)
  • PARI
    Vec(-6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1)) + O(x^20))

Formula

G.f.: -6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1))
Showing 1-4 of 4 results.