A077244 Bisection (odd part) of Chebyshev sequence with Diophantine property.
3, 22, 173, 1362, 10723, 84422, 664653, 5232802, 41197763, 324349302, 2553596653, 20104423922, 158281794723, 1246149933862, 9810917676173, 77241191475522, 608118614128003, 4787707721548502, 37693543158260013, 296760637544531602, 2336391557197992803
Offset: 0
Examples
22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-1).
Programs
-
Magma
I:=[3,22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
-
Mathematica
LinearRecurrence[{8, -1}, {3, 22}, 25] (* Vincenzo Librandi, Oct 12 2015 *)
-
PARI
Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
Formula
a(n)= (2*T(n+1, 4)+T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n).
G.f.: (3-2*x)/(1-8*x+x^2).
From Colin Barker, Oct 12 2015: (Start)
a(n) = (((4-sqrt(15))^n * (-10+3*sqrt(15)) + (4+sqrt(15))^n * (10+3*sqrt(15)))) / (2*sqrt(15)).
a(n) = 8*a(n-1) - a(n-2).
(End)
Comments