cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077244 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

3, 22, 173, 1362, 10723, 84422, 664653, 5232802, 41197763, 324349302, 2553596653, 20104423922, 158281794723, 1246149933862, 9810917676173, 77241191475522, 608118614128003, 4787707721548502, 37693543158260013, 296760637544531602, 2336391557197992803
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077243(n).
The even part is A077246(n) with Diophantine companion A077245(n).

Examples

			22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22.
		

Programs

  • Magma
    I:=[3,22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
  • Mathematica
     LinearRecurrence[{8, -1}, {3, 22}, 25] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
    

Formula

a(n)= (2*T(n+1, 4)+T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n).
G.f.: (3-2*x)/(1-8*x+x^2).
From Colin Barker, Oct 12 2015: (Start)
a(n) = (((4-sqrt(15))^n * (-10+3*sqrt(15)) + (4+sqrt(15))^n * (10+3*sqrt(15)))) / (2*sqrt(15)).
a(n) = 8*a(n-1) - a(n-2).
(End)