cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077256 Primes p such that p^k == 1 modulo k, where p=prime(k).

Original entry on oeis.org

3, 7, 11, 13, 19, 29, 37, 43, 53, 61, 71, 89, 103, 131, 151, 173, 181, 223, 229, 239, 251, 281, 311, 349, 359, 409, 433, 503, 541, 571, 593, 601, 619, 659, 661, 683, 691, 701, 719, 769, 827, 857, 911, 941, 953, 997, 1069, 1087, 1091, 1129, 1163, 1223, 1291
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2002

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(t) local p; p:= ithprime(t); if p&^ t mod t = 1 then p else NULL fi end proc:
    map(g, [$1..1000]); # Robert Israel, Oct 31 2016
  • Mathematica
    With[{no=250}, Transpose[Select[Partition[Riffle[Prime[Range[no]], Range[no]],2], PowerMod[First[#],Last[#],Last[#]]==1&]][[1]]]  (* Harvey P. Dale, Jan 05 2011 *)
    Prime[Select[Range[250], PowerMod[Prime[#],#,#]==1&]]

Formula

A077254(A049084(a(n))) = 1.
a(n) = A000040(A077255(n)).