A077266 Triangle of number of zeros when n is written in base k (2 <= k <= n).
1, 0, 1, 2, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2
Examples
Rows start: 1; 0,1; 2,0,1; 1,0,0,1; 1,1,0,0,1; 0,0,0,0,0,1; 3,0,1,0,0,0,1; 2,2,0,0,0,0,0,1; etc. 9 can be written in bases 2-9 as: 1001, 100, 21, 14, 13, 12, 11 and 10, in which case the numbers of zeros are 2,2,0,0,0,0,0,1.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
Table[Count[#,0]&/@IntegerDigits[n,Range[2,n]],{n,2,15}]//Flatten (* Harvey P. Dale, Jun 02 2025 *)
-
PARI
T(n, k) = #select(x->(x==0), digits(n, k)); row(n) = vector(n-1, k, T(n,k+1)); tabl(nn) = for (n=2, nn, print(row(n))); \\ Michel Marcus, Sep 02 2020
Formula
T(nk, k)=T(n, k)+1; T(nk+m, k)=T(n, k) if 0