cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077291 Second member of Diophantine pair (m,k) that satisfies 6*(m^2 + m) = k^2 + k: a(n) = k.

Original entry on oeis.org

0, 3, 8, 35, 84, 351, 836, 3479, 8280, 34443, 81968, 340955, 811404, 3375111, 8032076, 33410159, 79509360, 330726483, 787061528, 3273854675, 7791105924, 32407820271, 77123997716, 320804348039, 763448871240, 3175635660123, 7557364714688, 31435552253195
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002

Keywords

Comments

The corresponding m are given in A077288.
Numbers x such that (2*x^2 + 2*x + 3)/3 = y^2. The corresponding y are given by A080806. - Klaus Purath, Jul 30 2025

Examples

			b(3)=630 so a(3) = (-1 + sqrt(8*630 + 1))/2 = (-1 + sqrt(5041))/2 = (71 - 1)/2 = 35.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = -4, a(-1) = -1, a(0) = 0, a(1) = 3, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 26 2020
  • Mathematica
    LinearRecurrence[{1,10,-10,-1,1},{0,3,8,35,84},30] (* Harvey P. Dale, Oct 11 2019 *)
  • PARI
    concat(0, Vec(x*(x^3+3*x^2-5*x-3)/((x-1)*(x^4-10*x^2+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

Let b(n) be A077290. Then a(n) = (-1 + sqrt(8*b(n) + 1))/2.
G.f.: x*(x^3+3*x^2-5*x-3) / ((x-1)*(x^4-10*x^2+1)). - Colin Barker, Mar 09 2012
From Vladimir Pletser, Jul 26 2020: (Start)
a(n) = 10*a(n-2) - a(n-4) + 4 with a(-2)=-4, a(-1)=-1, a(0)=0, a(1)=3.
Can be defined for negative n by setting a(-n) = - a(n-1) - 1 for all n in Z.
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). (End)